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Abstract

Vision-based grasping focuses on determining successful grasp configurations

using input from vision sensors. Typically, algorithms take RGB and depth im-

ages from modern RGB-D cameras and output where and how to grasp a target

object in 3D space. With advances in grasping algorithms and vision sensors,

vision-based grasping has become more reliable across a wide range of scenar-

ios. Grasping models, enhanced by sophisticated engineering, can incorporate

physically grounded biases—such as smoothness and center of gravity—to gen-

erate high-quality grasps based on object geometry. At the same time, vision

sensors leveraging technologies like stereo vision, LiDAR, and infrared have

become more capable and affordable, allowing accurate geometry capture for

most objects. Moreover, the increasing availability of real-world datasets has

significantly boosted performance in practical robotic applications.

However, scenes containing transparency and clutter often fail to be cor-

rectly recognized by vision sensors, greatly reducing the reliability of vision-

based grasping algorithms. First, transparent objects cause complex sensing

failures in depth cameras due to its physical properties. Second, clutter, where

multiple objects are in contact, results in occlusions and unobservable surfaces.

These elements obstruct the acquisition of accurate geometry in a vision-based

manner, leading to inaccurate grasps.

In this thesis, I propose a reliable approach for acquiring scene geometry in

environments with transparency and clutter. By leveraging information avail-

able from general pretrained vision modules, the method focuses on the aspect

of generalization to various scenes. It extracts and utilizes mid-level representa-
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tions such as masks and surface normals in spatially structured ways to achieve

stable geometric reconstruction. First, I introduce a data-driven method for re-

liably obtaining instance masks in cluttered scenes containing transparent ob-

jects, along with a corresponding grasping algorithm. Second, I propose a novel

3D representation based on surface normals to effectively capture the geome-

try of transparent objects. Finally, I present an interactive perception pipeline

that actively acquires instance-level 3D geometry in cluttered scenes with oc-

clusions. Furthermore, experiments conducted on a real-world robotic platform

demonstrate the potential for practical deployment in real-world scenarios.

To enable robots to effectively replace human labor across diverse scenarios,

consistent performance in variable conditions must be ensured. By addressing

transparency and clutter—two major challenges for vision-based grasping—and

proposing solutions built on general-purpose vision modules, this thesis aims to

improve the stability and robustness of robotic manipulation.

Keywords: Vision-based robotic grasping, reliability, vision-based models, trans-

parency, clutter

Student Number: 2020-25228

ii



Contents

Abstract i

Chapter 1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Related Works 9

2.1 Vision-Based Robotic Grasping and Challenges . . . . . . . . . . . 9

2.2 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Clutter and Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 Enhancing Instance Segmentation Modules for Grasp-

ing 17

3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Instance Mask Augmentation for Transparent Objects . . 22

3.1.2 Mask-Based Grasping Avoiding Clutter . . . . . . . . . . . 24

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Real-World Robotic Grasping . . . . . . . . . . . . . . . . . 28

3.2.2 Instance Segmentation with Augmentation . . . . . . . . . 33

iii



3.2.3 Mask- vs. Depth-Based Grasping . . . . . . . . . . . . . . . 35

Chapter 4 Aggregating Multi-View Surface Normals for Grasp-

ing 38

4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Probabilistic Normal Field Learning Framework . . . . . . 46

Stochastic Normal and Mask from RGB Images . . . . . . 47

Maximum Likelihood Normal Field Learning . . . . . . . . 48

4.1.2 Grasping Algorithm Based on Normal and Density Grids 50

6-DoF Grasp Candidate Generation . . . . . . . . . . . . . 50

Collision-Free Path Planning . . . . . . . . . . . . . . . . . 52

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 3D Scene Reconstruction: Synthetic and Real . . . . . . . 53

4.2.2 Real Robot 6-DoF Grasping . . . . . . . . . . . . . . . . . . 59

Chapter 5 Interaction-Based Perception 61

5.1 Initial Field Training . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Input Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.2 Normal and Density Fitting Loss . . . . . . . . . . . . . . . 66

5.1.3 Feature Learning Loss . . . . . . . . . . . . . . . . . . . . . 66

5.1.4 Instance Field Representation . . . . . . . . . . . . . . . . . 67

5.1.5 Instance Candidate Tree Construction . . . . . . . . . . . . 68

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Algorithms for Determining Where-to-Interact . . . . . . . 69

5.2.2 Instance Identification under Rigid-Body Assumption . . 71

5.2.3 Selective Geometric Finetuning . . . . . . . . . . . . . . . . 74

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

iv



Chapter 6 Conclusion 79

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Open Questions and Future Directions . . . . . . . . . . . . . . . . 83

초록 108

Chapter 7 Acknowledgements 110

v



List of Figures

Figure 1.1 Overview of this thesis. To advance the goal of reliable

vision-based grasping in the presence of transparency

and clutter, this thesis presents three key contributions.

First, I propose a data-driven approach for obtaining ro-

bust instance masks. Second, I introduce a 3D geometry

aggregation method for transparent objects based on a

novel normal field representation. Finally, I present an

integrated interaction and perception pipeline designed

to handle complex, cluttered scenes. . . . . . . . . . . . . 5

Figure 3.1 In the (a) robotic grasping environment, given an (b) in-

put RGB image, my approach detects (c) instance masks

of each object and estimates (d) grasp pose and (e) grasp

quality for each instance mask. . . . . . . . . . . . . . . . 19

vi



Figure 3.2 Overview of my approach: From an input RGB im-

age (I), the detection network (F ) first segments both

transparent and opaque objects into binary instance masks

(M) [62]. The grasp estimator (G) takes in the top K

confident masks and predicts one global quality map (Q

map) and K theta maps (Θ1∶K). A single grasp is se-

lected from the quality map and theta maps. . . . . . . . 21

Figure 3.3 Dataset augmentation for transparent object in-

stance segmentation: I build my new dataset by syn-

thesizing transparent objects [26] on the images from the

MS-COCO dataset via image matting. . . . . . . . . . . . 23

Figure 3.4 Dataset generation for clutter avoidance: Example

of composing clutter avoidance dataset from objects and

labels in the Jacquard dataset [45]. From the original

mask (white), I consider clutter in the vicinity (gray) of

each object. Q maps are summed in a way that excluding

cluttered pixels (hatched pattern), which are replaced

with the lowest success rate. . . . . . . . . . . . . . . . . . 25

Figure 3.5 Qualitative comparison of my method with GG-

CNN [104]: For scenes with either only opaque or trans-

parent objects, I visualize the representations and pre-

dicted grasp quality maps predicted of my method and

GG-CNN. My approach successfully tracks K = 4 ob-

jects and clearly demonstrates a better grasp quality

map (Q map) than GG-CNN. . . . . . . . . . . . . . . . . 27

vii



Figure 3.6 Real-world test environment: Using (a) a grasping

robot, I test robotic grasping of both (b) plain objects

and (c) complex objects. . . . . . . . . . . . . . . . . . . . 28

Figure 3.7 Qualitative comparison of my method with Clear-

Grasp [121]: For scenes with plain (cylindrical, sim-

ple textured) and complex (difficult geometry) objects,

I visualize the representations and quality maps of my

method and ClearGrasp. Comparing to ClearGrasp which

uses a completed depth map for grasp estimation, my

mask-based method outputs better quality map for grasp-

ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.8 Qualitative comparison with and without clutter

avoidance grasping: With my clutter avoidance grasp-

ing, my method outputs grasping poses that can avoid

collision with multiple objects. . . . . . . . . . . . . . . . . 33

Figure 3.9 Qualitative comparison with and without trans-

parent augmentation: First two columns show results

from ClearGrasp [121] real testset, the third column

from my robot grasping environment, and the last col-

umn from MS-COCO [89] validation set. . . . . . . . . . . 35

Figure 3.10 Qualitative comparison of grasp quality maps: I

visualize the grasp quality maps, estimated from the ob-

ject instance mask and depth. The output quality maps

(Q map) from both inputs are visually very similar. . . 36

viii



Figure 4.1 Overview of NFL method. My method collects RGB im-

ages with a robot arm (a), then represents the scene as

a grid-based normal field (b). I search for viable grasps

via the reconstructed geometry obtained from the nor-

mal field (c). . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.2 Inputs for the NFL model. The inputs for probabilis-

tic normal field learning are the pixel-wise estimation

of surface normal modeled as von Mises-Fisher distribu-

tion and estimated object mask modeled as a Bernoulli

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.3 The outputs of the NFL model. I obtain a 3D normal

field where each point is mapped to a normal vector n

and density σ. From the normal field, I sample reliable

grasps, among which I select one that can induce trajec-

tory without collision. . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.4 Qualitative results on synthetic data. Top row shows ren-

dered depth for object pixels. Bottom row depicts error

maps with respect to groundtruth depth (red: high er-

ror, blue: low error). My model captures more accurate

depth of all objects. . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.5 Error maps of depth obtained from different input modal-

ities (red: high error, blue: low error). For both grid-

based (DVGO) and non-grid-based (NeRF) methods,

RGB input cannot accurately reconstruct depth for trans-

parent objects. Using both normal and mask leads to the

best results. Grid-based method (DVGO) also struggles

to capture geometry when using only normals for an input. 56

ix



Figure 4.6 Robustness across scenes. I visualize the geometries dif-

ferent methods use for grasping (normal field for NFL,

depth image for baselines). My method stably creates

normal fields for real world, Dex-NeRF, and blender scenes. 58

Figure 5.1 Instance and geometric ambiguity. Distinguishing whether

two objects move together or separately also shows am-

biguity (a). Unobservable surfaces induce geometric un-

certainty (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.2 Process to learn field. From coarse, mid, fine granular-

ity masks and normal images, I learn three fields each

reflecting the granularity on shared geometry. . . . . . . . 64

Figure 5.3 Overview of Interact-to-Identify. For a scene with geo-

metric and instance ambiguity, I perform interaction via

a robot arm. From few new observations, I resolve both

types of ambiguity resulting in simultaneous reconstruc-

tion and instance identification. . . . . . . . . . . . . . . . 65

Figure 5.4 Instance candidate tree and its nodes. The Instance can-

didate tree (b) contains information about the recon-

structed geometry (a). Each node in (b) corresponds to

one cluster as in (c), with the child node included in its

parent node. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.5 Selective geometric finetuning process. After a scene change

(a), I calculate uncertain surfaces (yellow in (b)) that

represents newly visible parts. For instances with uncer-

tain parts, I perform geometric finetuning (c) to alleviate

geometric ambiguity. . . . . . . . . . . . . . . . . . . . . . . 74

x



Figure 5.6 Instance candidate fields, uncertainty, and instance wise

geometry for various scenes. Different colors represent

different instances in instance candidate tree and in-

stance wise geometry. In instance candidate tree, I only

depict the leaf nodes. For uncertainty visualization, yel-

low represents high uncertainty (newly visible surface

due to change). Interact-to-Identify successfully gener-

ates instance candidate trees and recovers instance wise

geometry given change. . . . . . . . . . . . . . . . . . . . . 75

xi



List of Tables

Table 3.1 Grasp success rates: My method outperforms previous

methods especially for transparent or complex objects. . . 30

Table 3.2 Grasping success rates with and without clutter

avoidance: My clutter avoidance grasping substantially

improves the accuracy. . . . . . . . . . . . . . . . . . . . . . 32

Table 3.3 Instance segmentation accuracy on multiple datasets:

We train Mask R-CNN on my dataset and MS-COCO

dataset (baseline), and test the accuracy of instance seg-

mentation mask on multiple datasets (Higher the better). 34

Table 4.1 Depth reconstruction results on Blender dataset. Bold

represents best results. . . . . . . . . . . . . . . . . . . . . . 54

Table 4.2 Depth reconstruction accuracy depending on input modal-

ity. On both grid-based and non-grid-based methods . . . 54

Table 4.3 Effects of mask sampling and stochastic normals . . . . . 56

Table 4.4 Real world grasp success rates for several configurations:

single small, single big, and clutter. . . . . . . . . . . . . . 57

xii



Table 5.1 Geometric update performance of various methods. Met-

rics include visual surface discrepancy (VSD) [63] and in-

tersection over union (IoU) of depth for 150 novel view-

points. Bold represents best results while underline refers

to second best. . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 5.2 Precision and recall of 3D bounding boxes. Precision av-

erages IoU over predicted instances, while recall averages

over GT instances. Bold represents best results. . . . . . 78

xiii



Chapter 1

Introduction

1.1 Motivation

Vision-based robotic grasping refers to techniques that enable robots to grasp

objects using input from vision sensors. Formally, it can be viewed as a mapping

from sensor observations—such as images or point clouds—to grasp configura-

tions that enable successful object manipulation. This approach has attracted

significant attention due to its potential for enabling robotic grasping in un-

structured and diverse environments [104]. When the size, shape, and position

of objects are unknown, vision sensors provide essential information for effi-

ciently computing feasible grasps [98, 93, 50]. Moreover, vision-based grasping

plays a key role in supporting more complex tasks such as object rearrangement

and bin packing.

In its early stages, vision-based robotic grasping adopted a straightforward

classification approach, mapping visual input and grasp configurations to a

scalar value representing grasp quality [98, 95]. These methods typically used

1



a single RGB-D image captured by mainstream depth sensors [38], along with

grasp candidates constrained to be perpendicular to the image plane. Train-

ing data was often generated in simulation using diverse object meshes anno-

tated with successful grasps computed via classical algorithms [114]. Based on

this data, CNN-based models were able to learn grasping strategies and be

deployed in similar environments. However, these approaches suffered from do-

main discrepancies—such as noise in real-world depth data—that limited their

robustness. Additionally, restricting grasps to be perpendicular to the image

plane reduced the degrees of freedom, making it difficult to handle objects with

complex geometries effectively.

With the proliferation of 3D scanning hardware [38, 40, 126], many meth-

ods began collecting data directly from real-world environments, significantly

narrowing the domain gap between training and deployment [84]. At the same

time, grasp configurations evolved from 2D plane grasps (3-DoF) to full 3D vol-

ume grasps (6-DoF). While 2D planar grasping benefited from a reduced search

space, its heavy dependence on image viewpoint limited its generalization to

diverse object geometries. By transitioning to 6-DoF grasping, vision-based ap-

proaches became applicable to more realistic and unconstrained scenarios. Re-

cent methods have adopted more complex processing pipelines, incorporated im-

proved heuristics, and utilized realistic datasets to enable robust object grasping

in varied real-world environments [51]. Building upon traditional CNN-based

encoders, newly developed modules were carefully engineered to not only inter-

pret object geometry but also attend to local regions most likely to support suc-

cessful grasps [131]. In addition, physically grounded heuristics—such as mod-

eling object parts as cylinders and factoring in their center of gravity—further

improved grasp quality [51]. The increasing availability of real-world grasping

data has also made it feasible to train vision-based models that can generalize
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and be deployed across arbitrary robotic grasping settings [50, 52].

However, despite significant progress in developing reliable vision-based

grasping models, certain artifacts still severely impact grasping accuracy. In

scenarios where object geometry is difficult to capture with vision sensors, grasp

success rates can drop sharply. A prominent example involves transparent ob-

jects, such as glass. Depth sensors—commonly relying on optical cues like stereo

vision, LiDAR, or infrared—struggle to accurately reconstruct the surfaces of

transparent materials [121]. Moreover, simulating the measurement noise associ-

ated with these sensors remains challenging, as it varies significantly depending

on factors such as the camera type, background, and properties of the trans-

parent material. Another major obstacle to accurate geometric reconstruction

is occlusion, which often occurs in cluttered scenes or at contact points between

different objects. In such cases, the unobservable surfaces hinder effective scan-

ning, resulting in incomplete or inaccurate shape estimation [78].

To address the challenges of vision-based grasping in the presence of trans-

parency or clutter, numerous studies have emerged, generally following two

main approaches. The first focuses on leveraging the noisy sensor data di-

rectly, based on the idea that well-trained grasping models can still succeed

despite input noise. Some methods simulate the depth distortions caused by

transparent objects using advanced graphics techniques like ray tracing [135],

enabling the training of grasping models that are robust to such artifacts [72].

Other approaches aim to grasp effectively using only the visible surfaces in clut-

tered environments, without relying on complete object geometry [17, 117, 131].

The second approach seeks to improve the quality of geometric reconstruc-

tion itself. For transparent objects, some methods employ vision models pre-

trained on specially generated datasets [121], or use multiview aggregation tech-

niques such as neural radiance fields (NeRF)[102] to produce more accurate 3D
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representations[66]. In cluttered scenes, other methods adopt primitive-based

modeling strategies—such as fitting superquadrics—to infer unobservable sur-

faces and complete the object geometry [78, 142].

My research aligns with the second line of thought, focusing on acquir-

ing geometry in transparent and cluttered scenes. Distinctively, I place strong

emphasis on reliability by leveraging outputs from vision models designed for

general-purpose data, avoiding any scene-specific fine-tuning. I treat mid-level

vision estimators—such as object masks and surface normals—as noisy sensors,

and design pipelines that extract consistent object geometries from these im-

perfect signals. Unlike prior work [66, 74], I deliberately avoid scene-specific

post-processing or hyperparameter tuning, which can compromise generaliza-

tion. Real-world experiments on our robotic platform demonstrate the robust-

ness and deployability of the proposed approach.

I believe vision-based robotic grasping has the potential to revolutionize

a wide range of physical tasks, particularly those involving the manipulation

of diverse objects. Many operations that still rely on manual labor—such as

picking and placing items in logistics settings—could be automated through

robotics. However, to realize this potential, robots must perform reliably across

arbitrary real-world environments. Addressing and understanding the current

failure modes in vision-based grasping is therefore a crucial direction. To im-

prove reliability, solutions should capitalize on advances in general-purpose vi-

sion modules without relying on scene-specific adaptations. With this thesis, I

aim to contribute to methods that harness deep learning-based vision systems

to make vision-based robotic grasping more dependable.
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Figure 1.1: Overview of this thesis. To advance the goal of reliable vision-based

grasping in the presence of transparency and clutter, this thesis presents three

key contributions. First, I propose a data-driven approach for obtaining robust

instance masks. Second, I introduce a 3D geometry aggregation method for

transparent objects based on a novel normal field representation. Finally, I

present an integrated interaction and perception pipeline designed to handle

complex, cluttered scenes.

1.2 Research Goals

The ultimate goal of this thesis is to develop reliable methods that leverage in-

formation from pretrained vision models to robustly perceive object geometry in

challenging scenarios where traditional vision sensors often fail. These challeng-

ing cases include, but are not limited to, environments containing transparent

objects, occluded scenes, and visually ambiguous arrangements, all of which sig-

nificantly degrade the performance of conventional depth sensing techniques.
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Accurate and generalizable geometric perception in such settings is essential

for enabling robust robotic manipulation and interaction in real-world envi-

ronments. In particular, I focus on two major difficulties—transparency and

clutter—where existing methods frequently rely on handcrafted heuristics or

scene-specific calibration to compensate for sensing limitations. Instead, my

goal is to design methods that generalize across diverse conditions without re-

quiring such manual interventions. To this end, I propose three key ideas that

augment and utilize pretrained vision models in novel ways.

Idea 1: Enhancing instance segmentation modules to handle both transpar-

ent and opaque objects. In Chapter 3, I present a method for reliably obtain-

ing instance masks in cluttered scenes containing a mix of transparent and

opaque objects, along with a corresponding mask-based manipulation strategy.

To address the limitations of existing datasets, which are largely biased toward

opaque objects [89], I augment the data with additional transparent object ex-

amples, resulting in more robust instance segmentation. Building on prior grasp

estimation methods [104], I further develop a mask-based grasping pipeline that

effectively avoids clutter, enabling more stable grasping performance, as shown

on the left of Fig. 1.1.

Idea 2: Estimating and aggregating multiview surface normals to reconstruct

3D volumes of transparent objects. In Chapter 4, I propose a method that lever-

ages pretrained vision models predicting surface normals [4] from RGB inputs

for multiview reconstruction of transparent objects. Unlike existing approaches

that directly aggregate RGB views—often suffering from high per-view variance

due to transparency and requiring scene-specific thresholding [66]—my method

builds a surface normal-based field representation in 3D space. This represen-

6



tation enables both effective and efficient reconstruction of transparent object

geometry. The resulting volume is further used for real-world 6DoF grasping,

as illustrated in the center of Fig. 1.1.

Idea 3: Leveraging instance segmentation outputs for interaction-based per-

ception of contacting objects. When multiple objects are in contact, occlusions

often lead to missing or unobservable surfaces, posing challenges for reliable

geometric perception. In Chapter 5, I introduce a pipeline that uses pretrained

instance segmentation models [21] to infer hidden surfaces, actively induce

changes through interaction, and efficiently update the object geometry. To

achieve this, I design image-efficient optimization strategies that selectively re-

fine instance-level geometry, enabling accurate reconstruction despite occlu-

sions.

Although presented as separate ideas, the three contributions of this thesis

are closely aligned toward the overarching goal of achieving reliable vision-based

perception in previously unsolved and challenging scenarios—such as transpar-

ent objects, heavy occlusion, or objects in contact—in practical, real-world en-

vironments. These scenarios are particularly difficult because they challenge

the assumptions underlying most conventional vision-based systems, such as

the availability of clean depth maps or unambiguous visual features. To address

these limitations, the combined use of robust instance masks, multiview surface

normal aggregation, and interaction-driven updates provides a comprehensive

solution that operates reliably even under these adverse conditions. Robust

instance masks enable the initial decomposition of the scene into meaningful

object-level regions, even when objects are partially visible or visually similar.

Multiview normal aggregation takes advantage of geometric consistency across

viewpoints to overcome local sensing noise and produce coherent surface repre-
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sentations, which are especially important for grasping or manipulation plan-

ning. Meanwhile, interaction-driven updates allow the system to actively gather

new information by physically perturbing the environment, thereby resolving

ambiguities that cannot be disambiguated through passive observation alone.

Together, these components form a tightly integrated pipeline that addresses

both the sensing and reasoning aspects of the perception problem, enabling a

robot to form a more complete and accurate understanding of its surround-

ings. Crucially, all three methods are designed to work with vision modules

trained on general-purpose datasets, such as those used for instance segmenta-

tion or normal prediction in natural images. By building on pretrained models

rather than training bespoke systems for each new scene, the proposed frame-

work avoids scene-specific tuning and brittle hand-engineered heuristics that

often limit generalization. This greatly enhances the scalability and applicabil-

ity of the system across a wide range of robot platforms and deployment envi-

ronments. Ultimately, this integrated and generalizable approach represents a

meaningful step toward dependable robotic perception for complex, real-world

manipulation tasks, bringing vision-based robotic systems closer to the level of

robustness and adaptability needed for everyday use.
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Chapter 2

Related Works

2.1 Vision-Based Robotic Grasping and Challenges

Robotic grasping guided by visual sensing has long been recognized as a fun-

damental and challenging problem in robotics, especially in scenarios involving

unstructured or dynamic environments where explicit prior knowledge about

object shape, location, or identity is scarce or entirely absent. The ability to

perceive and understand complex scenes through vision is essential for enabling

autonomous robots to interact robustly and effectively with the physical world.

Vision-based grasping systems address this challenge by integrating percep-

tion and control, aiming to infer reliable grasp configurations based entirely

on visual input. These visual cues are typically captured in the form of RGB

images, depth maps, or a combination of both modalities (i.e., RGB-D), each

offering complementary information about the appearance and geometry of the

scene [2, 31, 49, 56]. The general structure of vision-based grasping frameworks

often follows a modular pipeline that begins with identifying the object or re-
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gion of interest, which may involve techniques for object detection, instance

segmentation, or salient region localization. Once the target is localized, the

system proceeds to estimate a suitable grasp pose, leveraging the visual in-

formation to infer the local geometry and determine how the robot’s gripper

should be oriented and positioned to achieve a successful grasp [48, 10, 11].

The representation of grasp plays a critical role in shaping the algorithm.

Early approaches typically adopt a planar grasp formulation—representing a

grasp as a 2D point, angle, and gripper width—allowing lightweight regres-

sion from top-down visual input. These methods have shown success in rel-

atively constrained environments and are fast enough for real-time deploy-

ment. RGB-based models regress grasp rectangles directly from image fea-

tures [118, 19, 112, 145, 46], while others leverage depth input [94, 104, 121, 58]

or fused modalities [36, 111] for better spatial localization. Despite their ef-

ficiency, such planar grasping methods often fall short in cluttered or highly

variable environments, where a 3D understanding of object geometry is re-

quired.

To tackle more general scenarios, researchers have moved toward full 6-DoF

grasping frameworks that predict the 3D position and orientation of the gripper

with respect to the target object. These approaches typically rely on 3D input

representations, such as point clouds [67, 136, 105] or voxelized data derived

from RGB-D sensors [128, 107, 59]. Such methods offer greater flexibility in

grasping objects at arbitrary poses, including those in stacks or corners, but

often demand greater computational resources and higher-fidelity scene recon-

structions. More recent approaches utilize both real-world data and human-like

heuristics to achieve impressive performance [42]. Some papers use attention

mechanisms to allow a learned network to focus on graspable regions, while

others leverage cylinder assumptions to simulate the centor of gravity [131, 51].
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From these advances, 6-DoF grasping given the geometry of the objects can

reliably be solved.

However, certain scenes pose significant challenges for vision-based object

geometry acquisition. One major challenge is transparency, which affects the

reliability of various depth sensors. Time-of-flight sensors, such as those using

infrared light [38] or LiDAR [39], often fail to return accurate depth readings

when rays pass through or are scattered by transparent surfaces, resulting in

unstable measurements. In addition, occlusions caused by clutter can render

parts of objects unobservable, making it difficult for vision-based systems to

capture complete and accurate geometry [142].

2.2 Transparency

Perceiving the geometry of transparent objects remains a long-standing chal-

lenge due to their unique optical properties, such as refractive distortion and the

absence of strong visual or depth cues [1]. Conventional RGB-D cameras, which

rely on active infrared sensing or structured light, often fail with transparent

materials, as these materials tend to refract, transmit, or scatter the projected

signals—leading to missing or erroneous depth measurements [120]. As a re-

sult, vision-based robotic systems often struggle in everyday environments such

as households or laboratories, where transparent objects like glassware, plastic

containers, or water surfaces are commonly encountered.

To address the challenges of transparent object perception, prior research

has explored alternative sensing modalities and capture strategies leveraging

specialized hardware. For example, polarization cameras [57] and thermal imag-

ing systems [76] have shown the ability to detect transparent surfaces under

specific conditions. However, such sensors are not yet widely adopted in robotic
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platforms due to factors such as high cost, integration complexity, and limited

accessibility. Additionally, classical approaches that capture multiple RGB im-

ages of transparent objects against structured backgrounds (e.g., checkerboard

patterns) can reconstruct high-fidelity geometry [134]. Nevertheless, these meth-

ods are computationally intensive and require controlled capture setups involv-

ing specific hardware like calibrated backgrounds and motorized turntables.

A more scalable alternative involves developing methods that operate solely

on RGB inputs captured from hardware configurations closely aligned with typ-

ical robotic grasping setups. In particular, a growing body of work adopts data-

driven approaches, where deep learning models trained on large-scale datasets

predict object geometry directly from RGB images. For example, ClearGrasp [120]

introduces a synthetic dataset of transparent objects to facilitate depth estima-

tion from RGB input. On the dataset front, annotated images of transparent

objects are becoming increasingly available at scale [53, 75]. The method intro-

duced in Chapter 3 follows this paradigm by aiming to extract reliable instance

segmentation masks for transparent objects in a data-based manner. These

masks abstract away material-specific visual properties while preserving object

boundaries and spatial relationships, enabling the grasping module to function

in a material-agnostic manner [61]. By explicitly reasoning about object iden-

tities and their spatial configuration, the proposed approach is better equipped

to handle failure cases arising from cluttered scenes or ambiguous boundaries.

Furthermore, I propose a training strategy that augments existing RGB image

datasets with synthetic segmentation masks and corresponding grasp anno-

tations. This design supports scalable learning across a wide range of object

types—both transparent and opaque—without relying on costly depth data

collection or specialized simulation infrastructure. By decoupling instance-level

perception from grasp prediction, the method improves robustness and enhances
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transferability across domains and sensor modalities.

On the other hand, the rise of implicit neural representations has led to a

shift in how scenes are encoded [87, 124, 143, 130, 24, 91, 132]. Neural Radiance

Fields (NeRF) [102] parameterize a scene as a continuous function that maps 3D

coordinates and viewing directions to RGB color and volume density. Although

capable of synthesizing high-quality images from novel viewpoints, NeRF’s re-

liance on dense sampling and MLP inference makes them computationally ex-

pensive for robotics applications. To accelerate inference, several methods have

proposed using sparse voxel grids or learned feature volumes to store intermedi-

ate representations. Examples include DVGO [127], TensoRF [23], and Instant-

NGP [106], all of which significantly reduce training and rendering time.

The capability to aggregate multi-view information into 3D geometry in-

spired works that perform robotic grasping on NeRFs [133, 85]. Especially for

transparent objects, where scanning hardware fail, methods to obtain the geom-

etry and perform grasping have been developed [66, 43, 73]. From the geometry

captured via NeRF frameworks, some methods use post processing such as

thresholding [66] to obtain depth images. Other use a dataset based approach

of directly predicting 3D geometry in the form of SDFs(Signed Distance Func-

tions) [43]. However, in Chapter 4, I propose a fundamental mismatch in the

NeRF framework and the RGB images of transparent objects. This leads to

NFL, or Normal Field Learning, which successfully captures the geometry of

transparent objects without scene-wise post-processing. NFL demonstrates that

reliable surface normal fields can be constructed from posed RGB images alone,

bypassing the need for accurate depth sensing. This property is particularly

valuable in scenes with transparent or specular surfaces. Compared to methods

like Dex-NeRF [66] that rely on noisy NeRF-derived depth, or GraspNeRF [43]

that train end-to-end from synthetic images, NFL offers a modular and efficient
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pipeline. It achieves fast scene reconstruction (under 40 seconds) and supports

generalization to real-world scenarios without extensive retraining.

2.3 Clutter and Occlusion

In scenes where multiple objects are densely arranged, occlusions hinder the

accurate acquisition of object geometry. Moreover, adjacent objects pose ad-

ditional challenges for perceiving instance-level information [54]. In particular,

neighboring surfaces can introduce inherent ambiguity in instance identifica-

tion—where an instance refers to a set of parts that move together as a single

unit. For example, it can be unclear whether the lid and body of a bottle con-

stitute a single instance, depending on their attachment or articulation. These

challenges in accurately perceiving both geometry and instance segmentation

often result in unreliable or failed grasp attempts [142].

One approach to handling occlusion-prone scenes is to leverage geometric

primitives to complete unobservable object surfaces. Among these, superquadrics [12]

are commonly employed to approximate and fill in missing regions of partial

or noisy geometry [142, 78]. While effective for representing a wide range of

convex shapes, superquadric-based methods are inherently limited in expres-

siveness—they struggle with complex or concave geometries, such as cups or

bowls, and typically do not address instance-level ambiguity, such as distin-

guishing articulated or adjacent parts of objects.

An alternative line of work seeks to simultaneously recover both geom-

etry and instance information in cluttered scenes using implicit neural rep-

resentations. Volumetric aggregation frameworks such as NeRF [102] can be

extended to incorporate rich image features extracted from vision foundation

models [125, 139]. Several recent studies closely related to our work leverage
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segmentation labels [21] to construct feature fields that encode instance-level

information [14, 74, 60, 144, 28, 149, 34, 138, 147]. These fields jointly repre-

sent object geometry and instance identity in a unified manner. In particular,

contrastive learning has been employed to train affinity fields [14], where points

belonging to the same object are mapped to similar feature embeddings. To

extract discrete object instances from these continuous fields, clustering al-

gorithms such as HDBSCAN [20] are typically applied in 3D space. Despite

the expressive power of these methods, most rely on passive observation of

static scenes, which often leads to persistent ambiguities in both geometric re-

construction and instance discrimination. To overcome these limitations, our

method—introduced in Chapter 5—incorporates active perception, applying

controlled scene interactions and using their effects to refine and update the

instance-aware field representations.

Active perception [6, 8, 7] refers to a class of methodologies in which a robot

leverages its own actions to improve its understanding of the environment. It

is a well-established area of research with broad applications [16], including

pose estimation [137, 35], object segmentation [22, 122], articulation [109] and

dynamics modeling [3], and the learning of manipulation [82] or grasping strate-

gies [113]. Recent works have extended active perception toward high-level scene

understanding by incorporating large language models and structured heuris-

tics. These systems can perform complex interactions to discover objects and

construct symbolic representations such as scene graphs [68]. However, these

approaches often rely heavily on precise prompt engineering and assume ac-

cess to near-perfect segmentation modules—conditions that may not hold in

real-world settings. Among related approaches, the work most aligned with our

philosophy is UNCOS [54], which addresses instance ambiguity in cluttered

scenes by using robotic pushing guided by an uncertainty-based metric. While
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UNCOS focuses on resolving ambiguity among adjacent objects, our proposed

Interact-to-Identify framework in Chapter 5 fundamentally differs in both ob-

jective and formulation. Specifically, UNCOS does not explicitly consider occlu-

sion in its design, whereas Interact-to-Identify in Chapter 5 is built to operate

in occlusion-prone environments by actively uncovering previously unobserv-

able regions through physical interaction. In addition, UNCOS is developed in

the 2D domain and relies on texture-based visual tracking [33] to detect scene

changes. In contrast, Interact-to-Identify in Chapter 5 operates entirely in 3D

and relies solely on geometric cues, making it more robust to texture variations

and better suited for complex, cluttered, and partially occluded scenes.
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Chapter 3

Enhancing Instance Segmentation
Modules for Grasping

One of the elementary tasks for an autonomous agent is to detect and grasp

objects for advanced manipulation tasks such as picking, sorting, and placing

items. Approaches to vision-based grasping aim to predict an optimal grasp

pose for each object in an unstructured environment. With the advance in

deep learning, most of the recent successful approaches [94, 98, 92, 95, 96]

are based on Convolutional Neural Networks (CNNs) in a supervised learning

setup. However, the approaches often fail to generalize to transparent objects

because their training datasets [84, 45] often under-represent transparent ob-

jects which exhibit very different visual properties and unreliable depth mea-

surement. Nonetheless, transparent objects (e. g ., glasses, cups, or plastic con-

tainers) are easily found in daily life and especially dominant in laboratories or

kitchens, which the autonomous agents should be able to handle.

Constructing a large-scale dataset that encompasses a diverse and balanced

mix of both opaque and transparent objects with accurate grasping annota-
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tions would be a crucial step toward overcoming the current limitations faced

by vision-based grasping systems. Such a dataset would enable the training and

evaluation of models that generalize across different material properties, partic-

ularly addressing the unique challenges posed by transparent objects, which are

often invisible or severely distorted in depth sensing. However, to the best of

my knowledge, no publicly available dataset currently satisfies this requirement.

Existing large-scale vision datasets, such as MS COCO [89] and ImageNet [44],

primarily consist of opaque objects and contain only a negligible number of

transparent instances, which are insufficient for training models specifically tai-

lored to handle transparency. On the other hand, datasets that do focus on

transparent objects tend to be limited in scope and lack annotations relevant

to robotic grasping. For example, TOM-Net [26] and the segmentation datasets

by Xie et al.[140, 141] concentrate exclusively on the perception of transpar-

ent materials but do not include grasp-related labels or pose information. As

a result, they are not directly applicable to robotic manipulation tasks. Some

recent approaches have attempted to address the problem by demonstrating

robotic grasping capabilities specifically for transparent objects using special-

ized perception techniques. These include methods that perform depth com-

pletion based on RGB-D fusion[121] or leverage multiple light-field images to

reconstruct the geometry of transparent surfaces [148]. While effective in con-

trolled settings, these approaches often involve complex, multi-stage pipelines

that introduce significant computational overhead. Consequently, their practi-

cality for real-time robotic applications in unstructured environments remains

limited, highlighting the need for unified, efficient, and generalizable solutions

supported by more comprehensive datasets.

In this chapter, I propose an efficient, real-time robotic grasping approach,

MasKGrasp, that effectively handles both transparent and opaque objects and
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(a) Grasping environment

(b) Input (c) Detection

(e) Grasp (d) Grasp quality

Figure 3.1: In the (a) robotic grasping environment, given an (b) input RGB

image, my approach detects (c) instance masks of each object and estimates

(d) grasp pose and (e) grasp quality for each instance mask.

generalizes to real-world objects with complex shape variations. My method

consists of two simple stages: detection and grasp estimation. As shown in

Fig. 3.1, given an input RGB image, the detection module first accurately es-

timates instance segmentation masks for both transparent and opaque objects

(Fig. 3.1 (c)). Then given top K instance masks, the grasp estimation module

finds an optimal grasp pose (Fig. 3.1 (e)) from the grasp quality (Fig. 3.1 (d))

for each instance. The essence of my approach is the usage of instance masks as

the intermediate representation for both types of objects from which the opti-

mal grasp is estimated. Because the instance mask effectively extracts essential

geometric layout while factoring out the appearance variation (i. e., opaque or

transparent), the grasp estimator can handle both types of objects as long as
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accurate instance masks are given.

I make the key contributions as follows. (i) I propose a mask-based robotic

grasping approach that successfully handles both opaque and transparent ob-

jects. I show that instance masks contain sufficient geometric context of the

scene for grasp estimation even in challenging multiple-object scenarios. (ii) I

design my grasping algorithm to consider free space between multiple instance

masks and predict the best probability grasp that avoids cluttered regions.

(iii) To accurately estimate instance masks for both types of objects, I propose

a large-scale instance segmentation dataset that contains both object types with

their instance annotations, by extending an existing large-scale dataset [89] with

synthetic transparent objects augmentation [26]. (iv) Training a state-of-the-art

instance segmentation method [62] on my dataset, I demonstrate that the model

generalizes robustly to both types of real-world objects without sacrificing the

accuracy on opaque objects.

On a real-world test environment with unseen challenging objects, MasKGrasp

outperforms the previous approach [121] to transparent object grasping while

achieving real-time performance. I demonstrate that my augmentation scheme,

along with my mask-based grasping algorithm, provides a solution for multi-

object grasping in the real world with unseen opaque and transparent objects.

3.1 Method

My method targets a general and challenging scenario for robotic grasping,

where the scene contains multiple transparent and opaque objects. Similar to

previous works [94, 19, 118, 46, 104], I follow the 2D planar-grasp representation.

The gripper posits perpendicular to the ground plane, and my method outputs

2D planar grasp pose [104] which is represented with the 2D position (x, y),
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Input RGB (I)

Detection (F)

Detected masks ( )

Grasp (G)

Q map (Q)

Theta maps (𝚯𝟏:𝐊)

Best grasp

Detection

Select K

Grasp estimation

Selected masks 

( )

Figure 3.2: Overview of my approach: From an input RGB image (I), the

detection network (F ) first segments both transparent and opaque objects into

binary instance masks (M) [62]. The grasp estimator (G) takes in the top K

confident masks and predicts one global quality map (Q map) and K theta

maps (Θ1∶K). A single grasp is selected from the quality map and theta maps.

the angle θ, and the width w of the gripper in the image coordinate. Fig. 3.2

visualizes the overview of my approach, consisting of two convolutional neural

networks. Given an input RGB image I, the detection network F first detects

instance segmentation masks M of N objects in the image, for both transparent
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and opaque objects:

F ∶ I↦M1∶N . (3.1)

The detection network F is trained on my extended dataset for both opaque

and transparent objects, which I discuss details in Sec. 3.1.1. I assume that the

masks contain sufficient geometric cues for grasping, which I validate in the

experiment.

Then after selecting top K confident instance masks, the subsequent grasp

estimatorG predicts a grasp quality mapQ and theta mapsΘi for each instance

i:

G ∶M1∶K ↦Q,Θ1∶K . (3.2)

The grasp quality map Q encodes the probability of grasp success when the

gripper’s center is located at the corresponding pixel, and theta maps Θi rep-

resents the optimal angle of the gripper at the corresponding location to pick

ith object. The quality map Q and a theta map for each instance Θi are both

1-channel maps. Note that the network outputs a single grasp Q out of K ob-

ject instances. The grasp estimator G is trained to jointly consider the crowd

of multiple object instances and regress the best successful grasp position and

angle while avoiding collision between the gripper and the clutter of objects. I

describe further details in Sec. 3.1.2.

3.1.1 Instance Mask Augmentation for Transparent Objects

One of my key ideas is to use instance masks as an intermediate representa-

tion of both opaque and transparent objects for grasping because the mask is

agnostic of appearance variation. Thus, obtaining accurate instance masks for

both object types is crucial to success of my approach.

However, as far as my knowledge, there exists no dataset that represents
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Figure 3.3: Dataset augmentation for transparent object instance seg-

mentation: I build my new dataset by synthesizing transparent objects [26]

on the images from the MS-COCO dataset via image matting.

both opaque and transparent objects with the same importance, or at least

reflects the occurrence in the real world. Public large-scale datasets [89] mostly

focus on opaque objects, prohibiting algorithms to generalize to many household

transparent objects (e. g ., bottles, glasses, or containers). Some datasets for

transparent objects only include labels of transparent objects and treat other

objects as background [26, 141]. Yet, it is challenging to construct an annotated

dataset for both classes on a large scale.

To build such a dataset in an efficient manner, I generate my new dataset

by synthesizing transparent objects on top of an existing large-scale real-world

dataset. Fig. 3.3 describes the pipeline of my dataset generation. I first sample

an image I from MS-COCO dataset [89] with its ground truth instance segmen-

tation IGT. I then randomly select a 3D transparent object from TOM-Net [26]

and build a 2D image matte: object mask m, attenuation mask ρ, and refrac-

tive flow map R. Then, the transparent object is synthesized using the image

matting equation:

I′ = (1 −m) ⋅ I +m ⋅ ρ ⋅M(I,R), (3.3)
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where I′ is the synthesized image, and M(⋅, ⋅) bi-linearly warps the input image

I given the refractive flow R and hallucinate the refractive effect from the trans-

parent object. I also combine the ground truth instance segmentation mask IGT

and the transparent object mask m to produce our new dataset with ground

truth instance masks of mixed appearance. This way, I are able to construct

a large-scale dataset with diverse real-world objects and abundant transparent

objects with their realistic visual refraction effects, without any extra annota-

tion cost.

Following Eq. (3.3) above, I sequentially synthesize a randomly sampled

transparent object on the image I up to n times, where n is randomly chosen

between 0 and 3. This sequential procedure allows us to realistically model the

occlusion between transparent objects. Furthermore, I make sure that occluded

parts in the synthesized image do not appear in the instance-wise ground truth

mask. As my robotic grasping method does not require the knowledge of object

class, I treat all objects as the same object class in the ground truth instance

mask, mainly for simplicity. Based on my newly-built dataset, I train Mask

R-CNN [62] to output instance masks for all graspable objects in the image.

3.1.2 Mask-Based Grasping Avoiding Clutter

My grasping network G is based on GG-CNN [104], which originally regresses

grasp labels from a depth input. While maintaining the network architecture, I

modify the network to estimate grasp labels from instance masks, by replacing

an one-channel depth input with a K-channel mask image obtained by stacking

top-K masks from the detection network F . I used K = 4 in my experiments.

Because my perceptual module distinguishes multiple objects in the scene,

I can design my grasp estimator to avoid collision between the robot gripper

and nearby objects when grasping a target object. I encourage my grasping
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Figure 3.4: Dataset generation for clutter avoidance: Example of compos-

ing clutter avoidance dataset from objects and labels in the Jacquard dataset

[45]. From the original mask (white), I consider clutter in the vicinity (gray)

of each object. Q maps are summed in a way that excluding cluttered pixels

(hatched pattern), which are replaced with the lowest success rate.

model to learn this behavior by composing the grasp labels for single objects

from the Jacquard dataset [45]. I randomly select K masks and accompanied

quality maps. After I aggregate the global quality maps, the quality values are

attenuated by the distance from the other object masks. As shown in Fig. 3.4, I

extract the cluttered pixels by identifying the pixels where the vicinity (shaded

gray) of objects or masks (shaded white) overlap. For such pixels, the ground

truth grasp quality map (Q map) is set to 0. Using the input K masks and

the attenuated global grasp quality values, my grasping network G learns to

discourage grasps in cluttered regions while encouraging grasps where other

objects will not obstruct. To handle the case with smaller number of objects

than K, the number of objects within a single mask-Q map pair is randomly
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selected between 1 and 4 leaving the remaining masks to be empty when there

are less than 4 masks. I make 80000 pairs to train my grasping module.

I further utilize instance masks for finding the grasp width. Unlike GG-CNN,

which uses an extra network, I directly find the grasp width from the instance

mask at the regressed grasp position and angle. The optimal grasp point {x∗, y∗}

is the position of the maximum value at Q. I can obtain the corresponding mask

index i at the location and find the optimal angle as θ∗i = Θi(x∗i , y∗i ). Given

the mask of the target object with the grasp position and angle, I find two

boundary points of ith mask intersecting with the line extended at the grasp

position, calculate the distance between them, and use it as the grasp width.

This is possible because instance masks clearly discern the region occupied by

the detected objects.

3.2 Experiments

I evaluate my grasping method with a real robot without fine-tuning for novel

objects at test time. I further present the instance segmentation accuracy with

my proposed augmentation scheme and the grasping accuracy utilizing only

mask information compared to that incorporating depth.

Implementation details. I first train the detection network (Mask R-CNN

[62]) on my augmented dataset with 114000 training images as described in

Sec. 3.1.1. I use the Adam optimizer [80] and train the model for 20 epochs

with the learning rate of 1 × 10−5. I then train my grasp estimator which takes

in the top-K confident masks to predict the global quality map Q and grasp

theta maps Θ1∶K , by using my clutter avoidance scheme in Sec. 3.1.2.
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Figure 3.5: Qualitative comparison of my method with GG-CNN [104]:

For scenes with either only opaque or transparent objects, I visualize the rep-

resentations and predicted grasp quality maps predicted of my method and

GG-CNN. My approach successfully tracks K = 4 objects and clearly demon-

strates a better grasp quality map (Q map) than GG-CNN.
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(b) Plain objects

(c) Complex objects(a) Grasping environment

Figure 3.6: Real-world test environment: Using (a) a grasping robot, I test

robotic grasping of both (b) plain objects and (c) complex objects.

3.2.1 Real-World Robotic Grasping

Experiment setup. We conduct a real-world grasping experiment using the

Panda Franka robot, as shown in Fig. 3.6 (a). We attach the RealSense 435i

camera to the robot gripper with calibration. We take a single RGB image from

the camera and run MasKGrasp to obtain instance masks and grasping pose

(i. e., optimal grasp position, angle, and width in image coordinates) for each

instance. Then, given the calibration parameters, we transform the predicted

grasp parameters into the real-world coordinates with a fixed height and then

execute the grasp. Given the target grasp pose in real-world coordinates, we first

move 20 cm above the intended grasping point, then descend to perform the

grasp. The same path planning scheme is used for all of my real-world grasping

experiments.
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Figure 3.7: Qualitative comparison of my method with ClearGrasp

[121]: For scenes with plain (cylindrical, simple textured) and complex (dif-

ficult geometry) objects, I visualize the representations and quality maps of

my method and ClearGrasp. Comparing to ClearGrasp which uses a completed

depth map for grasp estimation, my mask-based method outputs better quality

map for grasping.

We compare my method with two previous methods, ClearGrasp [121] and

GG-CNN [104]. In contrast to mine, both methods require a depth image as

input. ClearGrasp completes a noisy input depth map especially for transparent
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Configuration MasKGrasp (Ours) ClearGrasp [121] GG-CNN [104]

Plain T. 53.8 % 53.8 % 38.4 %

Plain O. 53.8 % 53.8 % 76.7 %

Complex T. 61.5 % 46.1 % 15.3 %

Complex O. 69.2 % 69.2 % 53.8 %

- Plain: simple cylindrical objects with plain texture

- Complex: challenging objects with complex texture

- T: transparent, O: opaque

Table 3.1: Grasp success rates: My method outperforms previous methods es-

pecially for transparent or complex objects.

objects and passes it to a grasp estimator. Since ClearGrasp does not specify a

grasping module, we use GG-CNN on the completed depth. GG-CNN here is

also trained on the Jacquard dataset [45], the same as my grasp estimator.

We use 24 real-world objects for testing, which consists of 10 plain objects

(e. g ., simple cylindrical objects with plain texture in Fig. 3.6 (b)) and 14 com-

plex objects (e. g ., toys of various shapes and sizes, and transparent objects

with challenging geometries in Fig. 3.6 (c)). These objects are not included in

the training stages of any of the methods. For each trial, we randomly place

different combination of objects in the grasping environment (Fig. 3.6 (a)). A

trial is considered as a success if the robot successfully picks up any of the

objects. After a single grasp attempt, the objects are once again randomly

placed to maintain the number of objects within the grasping scene. For each

configuration, we report the results of 13 trials.

Experiment result. Table 3.1 shows that MasKGrasp is a general solution

that outperforms previous methods for grasping transparent or challenging ob-
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jects with complex texture and shape. It is the only approach that achieves over

the 50% success rate in all tested scenarios.

GG-CNN demonstrates the best accuracy for plain opaque objects, which is

the training setup for the method. However it catastrophically fails on transpar-

ent objects due to noisy depth inputs. Fig. 3.5 qualitatively compares MasKGrasp

and GG-CNN [104] on the scene that contains either opaque or transparent ob-

jects exclusively. Note that the depth measurement on transparent objects is

not reliable and thus results in very noisy grasp quality map (Q map), com-

pared to the case with opaque objects. On the other hand, my method does

not use depth; thus it is free from the noisy depth measurement. My method

benefits from the stable instance mask segmentation from which the geometric

layout of both types of objects are observed well. As a result, my approach can

produce clear Q maps for both object types.

ClearGrasp shows comparable performance for plain objects that are similar

to their training examples, but does not generalize to novel transparent objects

with exotic shapes and textures. In Fig. 3.7, we compare the output of my

method (MasKGrasp) and ClearGrasp [121]. ClearGrasp is able to successfully

complete depth (which is used for grasp estimation) for plain cylindrical objects,

but it fails to generalize to more complex objects such as partially edged cups

and flat jars. The main reason is the domain gap between their training data and

the real-world environment with unseen, challenging objects. Because it is hard

to obtain real measurements with ground truth depth, their training set consists

of synthetic data with simple shapes. Also their training images are taken from

a slanted viewpoint, which possibly introduces additional domain discrepancy.

For better generalization to novel real-world settings, it is desirable to collect a

large-scale diverse dataset; yet, it is a challenging task. On the other hand, my

method leverages an existing large-scale real-world dataset with various types
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Configuration Clutter No clutter

With clutter avoidance 69.2% 92.3%

Without clutter avoidance 25.3% 84.6%

Table 3.2: Grasping success rates with and without clutter avoidance:

My clutter avoidance grasping substantially improves the accuracy.

of objects and thus generalize well to unseen, novel objects.

Note that the complex opaque objects in my setup include metallic objects

where the raw depth measurement suffers from specular reflection. Although

ClearGrasp is not specifically trained to handle such a specular noise, its depth

completion module compensates the inaccuracy and leads better performance

than GG-CNN with complex objects. MasKGrasp successfully generalizes to

the unseen challenging objects, including specular objects and complex trans-

parent objects, without depth information. Also the depth completion in Clear-

Grasp requires additional computation (roughly 1.19s) compared to MasKGrasp

(about 0.001s).

Effect of clutter avoidance. We argue that the clutter avoidance in grasping

module (described in Sec. 3.1.2) is crucial for a higher success rate of the algo-

rithm. We provide an ablation study in Table 3.2. As a baseline without clutter

avoidance, we train the grasping module only with the most confident mask

as input. We compare the grasp success rate on both scenes with and with-

out clutter. In the scenes with clutter, at least one edge of each object makes

contact with others, while no edges touch each other in the scenes without

clutter. All experiments are performed for 13 times, the same as the main ex-

periment. While both configurations perform well on the scenes without clutter,

the model with clutter avoidance substantially outperforms the ablated version
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Figure 3.8: Qualitative comparison with and without clutter avoidance

grasping: With my clutter avoidance grasping, my method outputs grasping

poses that can avoid collision with multiple objects.

in the cluttered scenes.

Fig. 3.8 visualizes the effect of my clutter avoidance in the Q map. With

the clutter avoidance (i. e., the first row), the output quality map successfully

suggests poses that can avoid collision between adjacent objects, and thus can

prevent from failures during grasping. As desired, the pixels with tight inter-

object distances are suppressed while the regions around isolated objects remain

intact.

3.2.2 Instance Segmentation with Augmentation

We verify that my augmented dataset can train the universal instance segmen-

tation algorithm which is applicable for multiple objects with mixed materials.

We train Mask R-CNN [62] with the original MS-COCO dataset [89] (i. e., base-

line) and my augmented version. Then we evaluate the instance segmentation
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Evaluation dataset Method AP50 AP75 IoU

MS-COCO(T)
Baseline 51.1 28.3 0.523

Ours 57.4 36.7 0.544

MS-COCO(O)
Baseline 27.2 14.2 0.358

Ours 27.7 14.8 0.337

Table 3.3: Instance segmentation accuracy on multiple datasets: We

train Mask R-CNN on my dataset and MS-COCO dataset (baseline), and test

the accuracy of instance segmentation mask on multiple datasets (Higher the

better).

accuracy on two datasets based on MS-COCO [89]. MS-COCO(T) contains

images from the validation set of MS-COCO with transparent objects, and

MS-COCO(O) contains the rest of the images from the MS-COCO validation

set. We use the following evaluation metrics:

• AP50: AP for masks with the IoU threshold of 0.5

• AP75: AP for masks with the IoU threshold of 0.75

• IoU: Average IoU of predicted and ground truth (GT) masks

Table 3.3 presents that the network trained with my proposed augmenta-

tion outperforms the baseline method on MS-COCO(T) and achieves on-par

accuracy on MS-COCO(O) dataset. The result indicates that my augmenta-

tion successfully captures the visual evidence to segment transparent objects,

while still sustaining accuracy for general objects.

Fig. 3.9 contains visualization of detected segmentation masks with real

images of transparent objects available from the ClearGrasp dataset, my real

environment, and the MS-COCO(T) dataset. While Mask R-CNN sometimes
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Figure 3.9: Qualitative comparison with and without transparent aug-

mentation: First two columns show results from ClearGrasp [121] real testset,

the third column from my robot grasping environment, and the last column

from MS-COCO [89] validation set.

misses the objects or blends the instances with background, with my augmen-

tation it is trained to successfully estimate more accurate instance masks for

transparent objects. The proposed transparent augmentation achieves better

results especially for transparent objects outside of the MS-COCO object cat-

egories.

3.2.3 Mask- vs. Depth-Based Grasping

We further validate that masks contain sufficient information for grasping com-

pared to a conventional depth-based approach. We train two versions of GG-
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Input mask Q map (mask) Input depth Q map (depth)

Ours GG-CNN

Figure 3.10: Qualitative comparison of grasp quality maps: I visualize

the grasp quality maps, estimated from the object instance mask and depth.

The output quality maps (Q map) from both inputs are visually very similar.

CNN [104] by providing either instance masks or depth maps as input, and

evaluate the grasp estimation accuracy using the Jacquard Grasping Dataset

[45]. We use the evaluation metric from [84], which is the same metric that

GG-CNN [104] uses.

From 30 trials, my mask-based grasping achieves the accuracy of 77.5% on

average, while the depth-based grasping achieves 80.6%. The accuracy drop

from using the mask is only 3.85%. The qualitative results in Fig. 3.10 show

that the grasp quality maps (i. e., Q map) of both networks are very similar,
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indicating that masks carry as much information as depth in the aspect of

vision-based robotic grasping. We therefore conclude that the instance masks

contain sufficient information for grasping.
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Chapter 4

Aggregating Multi-View Surface
Normals for Grasping

Transparent objects exhibit unreliable measurements, making it difficult for

robots to grasp reliably. The images of transparent objects often contain mini-

mal visual cues, and depth cameras also miss the transparent surfaces. Recent

approaches build a designated module for transparent objects using different

modalities, such as thermal cameras or polarized cameras [103, 65, 71, 100], but

such approaches require additional hardware. Meanwhile, for images including

transparent objects, some data-driven approaches have shown promising results

in 2D vision tasks (e.g., segmentation) [27, 101, 139, 88]. On the other hand, ex-

isting data-driven methods for 3D recognition for scenes including transparent

objects [29] have shown less-than-desirable performance. To this end, I pro-

pose a framework for learning 3D volume given multiple RGB images including

transparent objects, by exploiting the 2D recognition results of their mid-level

representations (e.g., segmentation masks).

Recently, neural field representations have gained significant traction and
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demonstrated remarkable success across a wide range of computer vision tasks,

including 3D reconstruction, novel view synthesis, and scene understanding [150,

115, 146]. These representations model spatially continuous signals using neu-

ral networks, enabling compact and high-fidelity encoding of complex scenes.

One of the most prominent examples is Neural Radiance Fields (NeRF) [102],

which was originally proposed to generate high-quality novel view images of 3D

scenes using only a sparse set of 2D input images. While NeRF was primarily

designed for view synthesis, it also implicitly encodes rich 3D geometric struc-

ture, making it attractive for applications beyond image rendering. In the NeRF

framework, a neural network is trained to map continuous 3D coordinates and

viewing directions to an output consisting of RGB color values and volume den-

sity σ. The volume density serves as an estimate of how much light is absorbed

or scattered at a given 3D location and, as such, acts as an implicit represen-

tation of object occupancy. This capability enables NeRF to recover surface

geometry indirectly, without requiring explicit 3D supervision. Building on this

foundational idea, several recent works have extended NeRF to robotics appli-

cations, particularly in the context of grasping. For example, Dex-NeRF [66]

and Evo-NeRF [72] adapt the NeRF architecture to model scenes containing

graspable objects. In these methods, the learned volume density σ is treated as

a proxy for object presence, allowing the system to reason about 3D structure

and identify feasible grasp points directly from the neural representation. These

NeRF-based grasping approaches offer a promising direction for robotic manip-

ulation, especially in scenarios where conventional depth sensors struggle—such

as with transparent or reflective surfaces. By learning from 2D images alone,

they bypass many of the limitations associated with explicit depth sensing or

mesh reconstruction.

However, I observe that raw images of transparent objects cannot directly
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train an accurate NeRF volume, as the volume density σ in NeRF reflects

opacity rather than the actual presence of surfaces. This poses a fundamental

limitation for modeling transparent materials, since, by definition, a perfectly

transparent object would exhibit near-zero or zero σ values at its surfaces. As a

result, the surface geometry of transparent objects becomes underrepresented

or entirely absent in the learned volume, leading to failure in downstream tasks

such as grasp prediction. This opacity-centered interpretation of σ severely re-

stricts the applicability of existing NeRF-based grasping methods to transpar-

ent or semi-transparent objects. To address this limitation, I propose an alter-

native representation, which I term Normal Field Learning (NFL). Instead of

relying on RGB intensity values, I train a neural volume from dense, pixel-wise

surface normal estimates, which can be obtained from existing normal estima-

tion models. In this framework, the focus shifts from learning radiance fields to

reconstructing the surface normal field defined on the visible regions of object

surfaces. To ensure that only object-related geometry is learned, segmentation

masks are employed to exclude background and occlusion regions during train-

ing. By anchoring the learning process to surface orientation rather than color

or opacity, the learned volume density σ becomes more aligned with actual ob-

ject existence, independent of material transparency. This makes NFL a more

robust and generalizable alternative for reconstructing geometry in scenarios

involving transparent or complex surface materials.

My framework is designed to compensate for the inevitable inaccuracies

present in surface normal and segmentation mask estimations, which are typ-

ically obtained from pre-trained networks that may not be optimized for all

viewing conditions or object materials. These estimations often contain noise

due to factors such as occlusion, lighting variation, and the intrinsic ambiguity

of transparent surfaces. To address this, my method leverages a multi-view ag-
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(a) RGB capture (b) Normal field (c) Grasp algorithm

Figure 4.1: Overview of NFL method. My method collects RGB images with

a robot arm (a), then represents the scene as a grid-based normal field (b).

I search for viable grasps via the reconstructed geometry obtained from the

normal field (c).

gregation strategy, where surface normals and masks are estimated from multi-

ple viewpoints and then fused to reinforce consistent information and suppress

spurious errors. By integrating evidence across views, the framework is able

to denoise and refine the input signals, allowing the training of a coherent and

structured volume in a manner analogous to conventional NeRF [102] pipelines.

To further enhance the robustness of the learned representation, I explicitly in-

corporate estimation uncertainty into the training process. Instead of treating

all pixel-wise normal and mask predictions equally, I weight the supervision

signal based on the confidence of each estimate. This confidence-aware learning

ensures that the model gives higher importance to reliable observations while

down-weighting noisy or ambiguous predictions. In particular, the uncertainty

in surface normal estimation is quantified by measuring the degree of disagree-

ment among network outputs when the input image is subjected to controlled

perturbations, such as color-jittering. These variations reveal the sensitivity of
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the predictions and serve as a proxy for epistemic uncertainty. To model this

uncertainty in a mathematically grounded way, I adopt the von Mises–Fisher

distribution [55], which is the spherical analogue of the Gaussian distribution

on the unit sphere S2. The von Mises-Fisher distribution enables the proba-

bilistic modeling of directional data, such as surface normals, while capturing

both the mean direction and the concentration (confidence) around it. This al-

lows the learning algorithm to represent and propagate directional uncertainty

during training. Similarly, the uncertainty associated with segmentation masks

is naturally expressed through the soft probability outputs of the segmenta-

tion network, which I model as samples from a Bernoulli distribution. These

probabilistic outputs provide a continuous measure of confidence for each pixel

belonging to the object class, allowing the training loss to adapt dynamically

based on the certainty of each segmentation decision. By jointly modeling and

leveraging these sources of uncertainty, the framework achieves a more resilient

and semantically faithful reconstruction of the normal field across diverse object

materials and viewing conditions.

While the vanilla NeRF is widely recognized for its high computational cost

and slow performance in both training and rendering, recent advances in neural

scene representation have introduced more efficient alternatives. One prominent

direction is the use of feature-grid representations, such as the one introduced

in DVGO (Direct Voxel Grid Optimization) [127]. These approaches replace

the densely sampled continuous MLPs in NeRF with spatially discretized voxel

grids, significantly reducing computation by directly optimizing learnable voxel

features. Inspired by this advancement, my method adopts the DVGO archi-

tecture to accelerate the learning of the normal field, benefiting from the fast

convergence and reduced memory overhead of grid-based representations. Fur-

thermore, to tailor this approach specifically for surface normal learning, I in-
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troduce an additional optimization by removing the intermediate MLP module

typically used to map voxel features to color and density values. In my context,

where the goal is to represent only the surface normal field rather than full

RGB radiance or volumetric opacity, this MLP becomes redundant. Instead, I

directly regress surface normals from the voxel grid, resulting in a leaner ar-

chitecture with fewer parameters and reduced training time. This streamlined

setup not only simplifies the network but also improves stability, as it avoids

the non-linearities and overfitting risks associated with deep MLPs. As a result,

I am able to train a full 3D normal field for transparent objects using only 30

multi-view images in approximately 40 seconds, as illustrated in Fig. 4.1 (b).

This represents a significant speedup compared to traditional NeRF pipelines

that typically require hours of optimization even for opaque scenes. More im-

portantly, the learned feature-grid-based normal field is compact, queryable

in real-time, and directly usable for downstream robotic tasks. For example,

I demonstrate that it can be efficiently integrated into motion planning algo-

rithms to identify collision-free grasping trajectories, as shown in Fig. 4.1 (c).

This stands in stark contrast to existing NeRF-based grasping approaches such

as Dex-NeRF [66] and Evo-NeRF [72], which rely on computationally expen-

sive volumetric rendering pipelines to synthesize multiple depth maps. These

rendered outputs are then used to infer potential grasping points, adding la-

tency and introducing redundancy. In contrast, my method leverages the direct

surface normal representation stored in the voxel grid, eliminating the need for

rendering altogether. This not only accelerates grasp planning but also makes

the system more interpretable and adaptable to real-world robotic manipulation

tasks involving transparent or visually ambiguous objects.

In summary, my contributions are as follows:

• I propose to use estimated surface normals and masks, rather than raw
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RGB images, to achieve more accurate geometric reconstructions for trans-

parent objects;

• I formulate a probabilistic framework robust to prediction errors, by tak-

ing into account the estimation uncertainty of surface normals and masks;

• My method is fast and can be directly used for grasping without the need

for rendering depth images, leveraging the feature-grid representation of

the volume.

My experiments display the performance and practicality of NFL in terms of re-

construction quality, speed, and the grasping success rate in real-world scenarios

under significant domain discrepancies. I additionally evaluate the functionality

of my algorithm on a photorealistic scene created using Blender Cycles [37].

4.1 Method

In this section, I present a probabilistic framework that learns the 3D geometric

field of a scene that contains multiple transparent objects, from which we can

assess reliable grasp poses. I assume that the only available observations are

multiple RGB images taken from different angles with known camera poses. I

do not utilize any depth image as input to my algorithm. The surfaces of objects

are assumed to be smooth almost everywhere so that the surface normals are

well-defined for most parts of the objects.

In NFL, the primary step is to learn normal and density fields simultane-

ously, where the normal field n ∶ R3 → S2 maps a 3D point to a unit vector

and the density field σ ∶ R3 → R maps a 3D point to a non-negative scalar.

Specifically, for any point x ∈ R3 on the surface of an object, n(x) is defined to

be the surface normal. For any point x ∈ R3 not on the surface of an object,
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Figure 4.2: Inputs for the NFL model. The inputs for probabilistic normal

field learning are the pixel-wise estimation of surface normal modeled as von

Mises-Fisher distribution and estimated object mask modeled as a Bernoulli

distribution.

n(x) is undefined and I allow it to take any arbitrary value. This arbitrary

assignment will not be problematic since my grasp pose generation only uses

normal vectors on object surfaces. The density σ(x) of a point can serve as an

indicator for surface points with valid normal values. Non-zero density values

indicate surface points, and zero otherwise.

In Sec. 4.1.1, I propose a probabilistic method that fits the normal and

density fields n(x), σ(x) from the RGB image set. Sec. 4.1.2 describes the grasp

pose generation and motion planning algorithms based on the estimated normal

and density fields.
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Grasp algorithmNormal field

Figure 4.3: The outputs of the NFL model. I obtain a 3D normal field where

each point is mapped to a normal vector n and density σ. From the normal field,

I sample reliable grasps, among which I select one that can induce trajectory

without collision.

4.1.1 Probabilistic Normal Field Learning Framework

My normal field adopts the standard volume rendering technique along the cam-

era rays [70, 102]. However, I propose to learn n(x) and σ(x) with 2D mid-level

representations, namely normal maps and segmentation masks estimated with

pre-trained networks, instead of directly using the RGB input images. Fig. 4.2

and Fig. 4.3 illustrates an overview of my normal field learning framework.

In the following sections, I propose stochastic representations of the estimated

mid-level representations, and a maximum likelihood training of the normal

field, where I take into account estimation uncertainties of both the normal

maps and segmentation masks.
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Stochastic Normal and Mask from RGB Images

I find the stochastic representation of the estimated normal maps with test-time

augmentation [4]. I denote a pre-trained normal estimator by N ∶ I ↦ N(I)

where I is an input RGB image and N(I) is an estimated normal map. The

normal vector at the (i, j)-th pixel is denoted by Nij(I) ∈ S2. I consider a class

of operators that transform input data A ∶ I ↦ A(I) that should not alter the

outputs if N is a robust estimator. That is, N(I) = N(A(I)). For instance, if

I emulate subtle changes in lighting with a color-jittering transformation, the

estimated shape should remain constant. However, pre-trained models often fail

to remain invariant under those transformations; I use the extent of deviations

as a measure of estimation uncertainty.

Let Ak be a normal-preserving transformation operator for k = 1, . . . ,m

(including the identity map), as discussed earlier, and consider m normal es-

timates of an image I, {N(Ak(I))}mk=1. For each (i, j)-th pixel, there are m

estimated normal vectors {Nij(Ak(I)) ∈ S2}mk=1. By using these estimates, I fit

a continuous probability density function for each pixel of the normal map.

I use the von Mises-Fisher distribution [55] as a density model for N ∈ S2:

f(N ;µ,κ) ∶= κ

2π(eκ − e−κ) exp(κµ
TN), (4.1)

where f is a probability density function, µ ∈ S2 is the mean direction parame-

ter, and κ ∈ R is the concentration parameter. The greater the value of κ, the

higher the concentration of f around µ, and the lower the uncertainty of N .

For each (i, j)-th pixel in RGB image I, excluding the background regions, the

Maximum Likelihood Estimates (MLEs) of the parameters can be computed

as follows. The MLE of the mean parameter is simply given as µij(I) = N̄/∥N̄∥

where N̄ is the arithematic mean N̄ ∶= 1
m ∑

m
k=1Nij(Ak(I)). On the other hand,

the MLE of the concentration parameter has no closed-form expression, yet
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instead, a simple approximation to κij(I) is available [9]:

κij(I) =
∥N̄∥(3 − ∥N̄∥2)

1 − ∥N̄∥2 . (4.2)

In addition, I find the stochastic representation of the estimated segmenta-

tion masks using a pretrained mask estimator M ∶ I↦M(I). Let the estimated

segmentation mask at the (i, j)-th pixel be denoted by Mij(I) ∈ [0,1]. I then in-

terpret each pixel of the segmentation masks as the Bernoulli distribution with

a parameter Mij(I), denoted by B(1,Mij(I)), since my segmentation network

is trained with the cross entropy loss.

Maximum Likelihood Normal Field Learning

Given the stochastic representations of the normal maps and segmentation

masks, I can formulate the normal field learning as a variant of maximum

likelihood training with the differentiable volume rendering [70].

Let rij(⋅; I) be a ray emitted from the camera that passes through (i, j)-th

pixel of an image I. I accumulate n(x) and σ(x) along a ray rij(t; I) with near

and far bounds tn and tf , and define a projected normal map as

Nproj
ij (I) ∶= Normalize(∫

tf

tn
T (t)σ(rij(t; I))n(rij(t; I))dt), (4.3)

where Normalize(⋅)maps a vector to a unit vector and T (t) = exp(− ∫ t
tn
σ(rij(s; I))ds)

is the accumulated transmittance along the ray. The projected normal map has

a dependency to n(x) and σ(x), so it may be better to write as Nproj
ij (I;n,σ),

but I omit n and σ for notation convenience.

I then define a per-pixel loss function for an (i, j)-pixel of an input image I

as the negative log-likelihood that measures how unlikely the projected normal

map Nproj
ij (I) is, given the probability density function of the estimated normal
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map f(N ;µij(I), κij(I)), as follows:

lij(I) ∶= − log f(Nproj
ij (I);µij(I), κij(I)). (4.4)

Ignoring the normalization constant that does not depend on both n and σ, the

per-pixel loss further simplifies to

lij(I) = −κij(I)µij(I)TNproj
ij (I). (4.5)

By minimizing the loss, the projected normal Nproj
ij (I) is fitted to µij(I) – since

the inner product of two unit vectors is maximal when they are equal – with

the weight of κij(I). Higher weights are assigned to pixels with more certain

normal estimations, i.e., those with higher values of κij(I).

Although it is tempting to sum lij(I) over all the indices i, j to define the

final loss function, it is unnecessary to take into account lij for the background

pixels where no object exists. I use the stochastic representation of the segmen-

tation mask to minimize lij only when (i, j) pixel is an object pixel. Specifically,

I sample bij(I) from the per-pixel Bernoulli distribution B(1,Mij(I)), and con-

sider the product bij(I)lij(I) as a new loss term. Therefore, when bij(I) = 0 (i.e.,

(i, j) belongs to background pixels), the loss will be ignored.

Additionally, it is important to learn accurate σ since I use density values

in practice to distinguish between object and non-object regions. Up to this

point, my attention has been on the normal field component for object pixels,

i.e., when bij(I) = 1, and the loss is not sufficient to learn the correct σ. I

therefore introduce a density penalization term (1 − 2bij) ∫
tf
tn

σ(rij(t; I))dt into

the loss function. For an object pixel bi,j(I) = 1, minimizing the loss encourages

the accumulated density σ to maintain a positive value. When bi,j(I) = 0, or it

is a background pixel, the loss effectively suppresses the density along the ray

rij(t; I), t ∈ [tn, tf ] to be zero.
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In summary, the loss function for an image I is:

L(I;n,σ) ∶= ∑
i,j

bij(I)lij(I) + (1 − 2bij(I))∫
tf

tn
σ(rij(t; I))dt, (4.6)

where bij(I) ∼ B(1,Mij(I)). And, given a set of images {I(l)}Ll=1, the final loss

function for the normal and density field is the empirical mean of losses for

input images:

L(n,σ) ∶= 1

L

L

∑
l=1

L(I(l);n,σ). (4.7)

4.1.2 Grasping Algorithm Based on Normal and Density Grids

After I obtain the 3D geometric layout parameterized by normal and density

functions, I can regress for 6 DoF grasp positions and collision-free trajecto-

ries as shown in Fig. 4.3 (right). Since the process to train normal and density

values is similar to conventional NeRF formulation [102], I can accelerate the

training by employing discrete voxel grid representations as suggested by recent

works [127]. Fast speed is particularly useful where robot concurrently observes

the scene and grasps an object. Furthermore, my formulation can avoid vol-

ume rendering to find the surface points and their normals, and estimate them

directly from individual grid points. Note that the original voxel-grid implemen-

tation trained with color images stores feature vectors on the grid and uses an

additional shallow MLP to regress for the color values. However, my approach

heavily utilizes the density and normal grid, where the grid points contain the

raw density and normal values. The direct access of grid representation enables

us to quickly find feasible grasping points, and generate collision-free paths.

6-DoF Grasp Candidate Generation

The density and normal grids provide surface point positions and their surface

normal vectors, respectively, which can be directly used to find feasible grasping
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points for a two-finger gripper [97, 64]. The grasp candidate generation algo-

rithm is presented in Algorithm 1 From a set of 3D points on the density grid,

I extract a subset of points {x1, . . . , xN} that have density values higher than a

threshold value δdensity, which represent points on the surface. Denote the cor-

responding normal vectors for those surface points by {n1, . . . , nN}, obtained

from the normal grid. Then, I first find a set of index pairs (i, j) that satisfies

two conditions: (i) ∣xi − xj ∣ < δdist with some distance threshold δdist defined

considering the gripper width and (ii) ni ⋅ (xi − xj) ≥ 0.99 to find antipodal

points. I denote the set of these index pairs S, which serves as the candidate

grasp points.

Algorithm 1 Algorithm for Two-Finger Grasping

Input

• x: point in space,

• n(x): normal field at x

Algorithm

C = {x1, x2, ..., xN}

S = {}

for i, j ∈ [1,N] do

if ∣xi − xj ∣ ≤ dist.thresh then

validi = (n(xi) ⋅ (xi − xj) ≥ 0.99)

validj = (n(xj) ⋅ (xj − xi) ≥ 0.99)

if validi ∧ validj then

S ← {i, j}

return S
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Collision-Free Path Planning

Given the set S of candidate grasp points, I find a robot configuration and

path that grasps the object while avoiding collisions with the surrounding envi-

ronments. The collision against 3D scene layout is approximated by comparing

against the set of surface points {x1, . . . , xN} which are already extracted. Ide-

ally, looking at all of the candidate grasps in S would lead to better performance.

However, in order to expedite the process of selecting grasps, I sort the index

pair set S with the density score σ(xi) + σ(xj) for (i, j) ∈ S, and start from

the one with the highest density score. I examine the top 100 pairs from grasp

candidates in practice. For each candidate grasp pair, I test 8 pitch angles for a

gripper and search for the configuration that does not collide with any of surface

points. Then I find the joint trajectory of a robot that arrives at the target pose

without collision. I use PyBullet planning library [41] for the collision detection

and path planning.

4.2 Experiments

In this section, I compare my NFL-based 3D reconstruction method and 6-DoF

grasping algorithm with existing RGB image-based 3D reconstruction methods

and depth rendering-based grasping methods. In Sec. 4.2.1 I compare geometry

reconstruction results, and in Sec. 4.2.2 I compare the grasping perfomance in

the real world.

Baselines. I select baselines for comparison that satisfy two conditions.

First, baselines should take as input multiview RGB images along with their

camera parameters. Second, baselines should be trained solely by real-world

data, since my main target is grasping in complex configurations in the real

world. The compared baselines are: NeRF [102], DVGO [127], Dex-NeRF [66],
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Dex-DVGO and GraspNeRF [43]. 1. All of them train the color and density

fields directly from RGB images. NeRF uses neural networks to represent the

fields, whereas DVGO employs voxel grid representations followed by a shallow

MLP. Dex-NeRF applies a threshold on the density values to better capture

transparent objects; I implement the same technique for DVGO and denote it

by Dex-DVGO. For DVGO and Dex-DVGO, I retain the MLP in the original

implementation of DVGO, since they could not converge without retraining for

transparent objects.

Implementation Details. I estimate surface normals and masks given

RGB images by neural networks trained with the large-scale real-world dataset [32].

For surface normal estimation, I finetune the work by Bae et al. [4] for 20000

steps. To predict segmentation masks, I train a CNN based model [30] for 20

epochs. For test-time augmentations, I employ color jittering transformations

(hue transformations) provided by the Torchvision library. I use one original

and nine augmented images to fit von Mises-Fisher distribution on pixel-wise

normals.

I train NFL on an RTX 3090 for 5000 steps with a grid resolution of 1503

for my real scene. The bounding box dimensions are 50cm × 60cm × 40cm and

it is positioned to enclose the robot’s workspace. It takes around 40 seconds to

train a normal field.

4.2.1 3D Scene Reconstruction: Synthetic and Real

First, I provide a quantitative evaluation of geometry reconstruction using syn-

thetic scenes with transparent objects. I create a photo-realistic rendering of a

scene with 3 objects of glass textures on top of a wooden table using Blender Cy-

1ClearGrasp [120] is not included since ClearGrasp uses only a single image. Although
Evo-NeRF [72] satisfies both conditions, I are unable to find the custom grasping dataset that
is necessary to implement the algorithm.
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cles [37]. I train all models until convergence given 100 input images. I compare

the accuracy of rendered depth images on three metrics from ClearGrasp [120].

Specifically, I render test-view depth images from viewpoints equally spaced

on a cylinder bounding the objects. Accuracy is defined as the ratio of object

pixels where the error is within a threshold. Compared to RMSE, this metric

is agnostic of scene scale. The threshold is selected as 5%, 10%, and 25% of the

groundtruth depth, as in [120].

Table 4.1: Depth reconstruction results on Blender dataset. Bold represents best
results.

Config Grid-based (DVGO) Non grid-based (NeRF)

Method NFL Dex-DVGO DVGO Dex-NeRF NeRF

δ0.05 85.35% 20.48% 19.13% 74.96% 27.17%
δ0.10 92.64% 29.25% 38.02% 81.39% 56.25%
δ0.25 97.49% 46.50% 82.47% 95.15% 93.81%
Time (min.) 2 15 15 720 720

Table 4.2: Depth reconstruction accuracy depending on input modality. On
both grid-based and non-grid-based methods

Config Grid-based (DVGO) Non grid-based (NeRF)

Modality Normal Mask N + M RGB Normal Mask N + M RGB

δ0.05 11.48% 90.57% 96.85% 19.13% 83.01% 89.94% 93.40% 27.17%
δ0.1 72.30% 94.18% 97.52% 38.02% 92.26% 94.33% 96.97% 56.25%
δ0.25 99.10% 97.78% 98.17% 82.47% 99.66% 98.72% 99.93% 93.81%

- N + M: normal + mask

Table 4.1 contains the quantitative results on the depth accuracy. My model,

NFL, marks the best accuracy in all of the depth accuracy metrics while taking

less time than others. Dex-NeRF and NeRF are the vanilla representation that

utilize a single MLP to represent the entire scene, and take about 12 hours. The

grid-based acceleration shortens the training time of Dex-DVGO and DVGO

into 15 minutes. NFL further accelerates the time into 120 seconds by removing

MLPs, which are required to synthesize novel view images for Dex-DVGO and
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Figure 4.4: Qualitative results on synthetic data. Top row shows rendered depth
for object pixels. Bottom row depicts error maps with respect to groundtruth
depth (red: high error, blue: low error). My model captures more accurate depth
of all objects.

DVGO. I also observed that depth rendering technique of Dex-NeRF improves

the accuracy of geometry compared to NeRF.

The qualitative results are presented in Fig. 4.4. The top row shows the

depth map for the object pixels, whereas the bottom row shows the error map

relative to the groundtruth depth. For the error map, red pixels indicate higher

error while blue pixels indicate more accurate depth measurements. My method

reconstructs more accurate depth for most of the object pixels while Dex-DVGO

fails to capture geometry. Dex-NeRF performs reasonably except the middle

part of the large bowl, where the object appears more transparent and lacks

visual evidence in RGB images.

Ablation on Input Modality. I verify that normals and masks are more

effective to reconstruct the geometry of transparent objects compared to di-

rectly using RGB images. Similar to the previous experiment, I test on a scene

with 3 objects with 100 images as input and compare the reconstruction results

in Table 4.2. Given the same set of images and the camera parameters, the
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Figure 4.5: Error maps of depth obtained from different input modalities (red:
high error, blue: low error). For both grid-based (DVGO) and non-grid-based
(NeRF) methods, RGB input cannot accurately reconstruct depth for transpar-
ent objects. Using both normal and mask leads to the best results. Grid-based
method (DVGO) also struggles to capture geometry when using only normals
for an input.

reconstruction is significantly more effective with surface normals and masks

than with RGB images. Although all combinations show better reconstruc-

tion performance compared to RGB input, using normals and masks together

demonstrates the best performance in both grid based (DVGO) and non-grid

based (NeRF) approaches. The error maps in Fig. 4.5 show similar results. The

normal maps without masks are not sufficient to reconstruct accurate geometry.

Masks alone cannot accurately capture the concave parts of the bottle.

Table 4.3: Effects of mask sampling and stochastic normals

Uncertainty None Mask Sampling
Stochastic Normal
Mask Sampling

δ0.05 84.71% 85.25% 85.35%
δ0.10 92.85% 91.27% 92.64%
δ0.25 97.24% 96.25% 97.49%

Effect of Considering Input Uncertainty. While normals and masks are

useful in training the field to obtain geometry of transparent objects, the esti-

mations can be erroneous. NFL employs probabilistic formulation as described
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in Sec. 4.1.1 to consider the uncertainty in the estimated inputs. Stochastic

normal incorporates the distribution of normal estimation from test-time aug-

mentation, and it is ablated by considering all rays equally in Eq. (4.6). Mask

sampling can be ablated by using binary values for bij(I) after thresholding.

Table 4.3 shows that using both stochastic normal and mask sampling records

the best results.

Table 4.4: Real world grasp success rates for several configurations: single small,
single big, and clutter.

Model NFL GraspNeRF [43] Dex-NeRF[66] Dex-DVGO NeRF [102] DVGO [127]

S.S. 71.43% 14.28% 28.57% 0% 0% 14.28%
S.B. 57.14% 14.28% 0% 0% 0% 0%
C. 85.71% 28.57% 28.57% 0% 14.28% 0%
Time 40 sec 90ms 12 hr 15 min 12 hr 15 min

- S.S.: single small
- S.B.: single big
- C.: clutter

Robustness Across Scenes. My normal field aggregates normal estimates

from pre-trained networks and shows robust performance across challenging ap-

pearance variations. Fig. 4.6 compares the reconstructed geometry of my model

and two baselines in different representations. While NFL builds the 3D nor-

mal field, baselines use depth maps rendered from the learned neural volume

to obtain grasp points. NFL successfully builds normal fields for all cases using

the same setup despite the variation in objects, lighting, camera parameters

and more. The input from my real world scene (left) is especially challenging,

containing fewer visual cues (edges of transparent objects) compared to other

datasets. In contrast, Dex-NeRF and Dex-DVGO are sensitive to the appear-

ance or lighting of the transparent objects and could not render an accurate

depth map from our real-world images. The dataset of Dex-NeRF exhibits con-

siderable visual evidence, such as stark edges of objects, although the objects

are transparent. GraspNeRF utilizes only 6 images and has a fast prediction
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Figure 4.6: Robustness across scenes. I visualize the geometries different meth-
ods use for grasping (normal field for NFL, depth image for baselines). My
method stably creates normal fields for real world, Dex-NeRF, and blender
scenes.
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time, but fails to accurately capture the geometry of the objects. In order to

successfully run GraspNeRF, I need to find the six viewpoints that are similar

to the original implementation. In addition, I re-scale the scene to fit in the

30cm cube originally used in GraspNeRF. After these measures, GraspNeRF

captures the ground stably. However, GraspNeRF’s reconstruction performance

fluctuates depending on the scene. Dex-NeRF and Dex-DVGO directly use color

images and only obtain the volume density σ for such opaque appearances out

of transparent objects.

4.2.2 Real Robot 6-DoF Grasping

I use a real-world robot to capture input images to acquire geometric layout and

perform grasping tasks. I attach a Realsense d435i camera at the end effector

of a Panda Franka Emika robot using a 3D printed mount, and use only RGB

images for input. I calculate the camera poses using the end effector location and

the relative transformation between the mounted camera and the end effector.

I utilize 30 images for my model and baselines other than GraspNeRF. Since

GraspNeRF is a pretrained network as a whole, adjusting the number of utilized

images is not straight-forward. Thus for GraspNeRF, I match the 6 viewpoints

utilized in the original GraspNeRF paper. My image capturing system takes

up to 1 second to move and capture to each viewpoint. To assist placing the

objects in the same configuration for different methods, I built a GUI that

overlays object positions from the previous observations. For grasping baselines

other than GraspNeRF, I render a depth image from the view looking straight

down at the objects as in Dex-NeRF. Then I calculate the best top-down grasp

points using the model from Dex-Net [93], which is pretrained for two-fingered

grippers. I move the gripper 20 cm above the grasping point then lower it to

grasp. For GraspNeRF, I utilize the pretrained model which predicts the neural
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field and grasping end effector pose. I follow the Gaussian smoothing process,

then select the grasp with the highest quality value. Each trial is classified as

a success if the robot successfully picks up an object and places it into a bin.

Table 4.4 contains the grasp success rates after seven grasps for three differ-

ent scene configurations: Single Small, Single Big, and Cluttered. The Big and

Small are assessed based on the relative size compared to the gripper width,

which reflects the grasping difficulty. For Cluttered scenes, I put six objects

within a 30 cm × 30 cm square region. While my model shows good performance

on all three configurations, baselines struggle to effectively grasp objects, even

with more training time. Specifically, NFL excels in the cluttered scene thanks

to a rich set of candidate grasps obtained from accurate holistic reconstruction.

All of the baselines struggle on the Single Big scene. In Single Big configura-

tion, the thickness for a candidate grasp is comparable to the width of an open

gripper, and therefore I need to find the precise grasp location from accurate

geometry. In contrast NFL succeeds in grasping over 50% of single big scenes,

indicating the superior reconstruction accuracy of NFL. GraspNeRF and Dex-

NeRF show the second best performance. Especially, GraspNeRF succeeds for

at least one experiment for all configurations, with the least inference time.

Dex-DVGO, NeRF, and DVGO fail in my grasping experiments. GraspNeRF

marks the least time to build a neural field. Different to the Blender dataset

experiment of Table 4.1, my method takes 40 seconds to train. This is because

I use less images as input (100 vs 30), which allows shorter training time.
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Chapter 5

Interaction-Based Perception

With recent advances in vision-based algorithms, many robot perception tasks

can be accomplished with image input only. Some learning-based methods can

predict both object 3D geometry and instances simultaneously [78, 79]; how-

ever, these approaches rely on simplified shape representations, such as su-

perquadrics, and are limited to known shape categories, which hinders perfor-

mance on out-of-distribution data. Recent methods based on Neural Radiance

Fields (NeRFs) and their variants [102, 66, 83] can capture the 3D geometry of

unknown objects using multi-view RGB images, overcoming the limitations of

data-specific learning and generalizability issues. By leveraging 2D segmenta-

tion masks from a pre-trained model like Segment Anything Model (SAM) [81],

the multi-view information can be aggregated to jointly estimate object geom-

etry and instances [14, 74], even on novel, unknown objects.

However, a single-session visual observation of a scene inevitably introduces

ambiguities that challenge accurate instance and geometry identification. In

cluttered scenes, distinguishing individual object instances – by an object in-
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(b) Geometric ambiguity(a) Instance ambiguity

Figure 5.1: Instance and geometric ambiguity. Distinguishing whether two ob-
jects move together or separately also shows ambiguity (a). Unobservable sur-
faces induce geometric uncertainty (b).

stance, I refer to a physically connected component within a scene that moves

as a single unit – becomes particularly difficult when objects are in contact.

Moreover, occlusions obscure surfaces, limiting the ability to recognize com-

plete geometry. Fig. 5.1 highlights these ambiguities and a common failure

mode in existing NeRF-based methods: without additional information, it is

unclear whether attached objects, such as those with similar textures or a cup’s

lid and body, move together or separately (instance ambiguity). Additionally,

contact surfaces remain hidden, preventing accurate geometric reconstruction

(geometric ambiguity). A natural solution is to design a loop that enables the

robot to interact with objects, then gather more information about the scene.

Here, this loop should incorporate features to efficiently reflect change in the

scene, since instance and geometric identification from scratch is an expensive

operation.

To this end, I propose a novel Interact-to-Identify framework that: (i) en-

ables the robot to autonomously incur change in the scene, (ii) after the in-

teraction, quickly identifies the instances, and (iii) refines geometry without

requiring extensive additional data capture or computation. As a result, my

method can acquire disambiguated information on both instance and geome-
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try, benefiting downstream tasks such as manipulation [108]. My core approach

involves constructing a 3D geometric estimate along with an instance candidate

tree using three levels of SAM’s mask prediction results. This tree representa-

tion offers discrete levels of granularity to quickly identify instance ambiguity

within the visual observations. Based on each object’s ambiguity level, my rule-

based algorithm generates waypoints, enabling the robot to interact with the

environment and induce changes in the scene. Finally, with only a few sparse

additional observations from altered scenes, my method can efficiently iden-

tify accurate instances based on the rigid-body assumption for each object and

quickly refine object geometry.

My extensive experiments demonstrate the effectiveness of my methods in

both simulated and real-world scenarios, validating, for the first time, a frame-

work capable of rapidly identifying object instances and geometry of unknown

3D objects in cluttered scenes through interaction. With these recognition re-

sults, the robot can effectively perform diverse manipulation tasks that require

instance and 3D geometry information, such as sequential grasping, where in-

stance information allows instant removal of grasped objects from the recon-

structed scene as well as efficient geometric finetuning of newly visible surfaces.

My contributions can be summarized as follows:

• A framework for simultaneous recognition of object geometry and in-

stances through interaction;

• A formulation to estimate and exploit change given few observations after

the change to handle instance ambiguity;

• Instance-wise geometric finetuning utilizing a novel visibility-based un-

certainty metric to quantize geometric uncertainty.
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Figure 5.2: Process to learn field. From coarse, mid, fine granularity masks and
normal images, I learn three fields each reflecting the granularity on shared
geometry.

5.1 Initial Field Training

I employ normal, density, and feature field representations of a 3D scene for

simultaneous object instance and geometry identification. Building on prior

work [83], I use a surface normal field n(x) and a volume density field σ(x)

for x ∈ R3 to capture object geometry1. In this work, inspired by [14], I further

incorporate a feature field F (x) – which outputs a multi-dimensional feature

vector – defined on surface points to encode instance-related information. By

clustering in this feature vector space, I can then identify object instances.

While my main contribution is an efficient method for rapidly updating

the initial field representations using a few sparse additional observations (dis-

cussed in the next section), in this section, I first describe how to initialize

these representations from multi-view, relatively dense RGB images, following

previous works [83, 86, 14]. This section consists of the following three subsec-

1The density field σ(x) assigns zero values to regions outside the surface, while the normal
field n(x) is defined only on object surface points.
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Figure 5.3: Overview of Interact-to-Identify. For a scene with geometric and
instance ambiguity, I perform interaction via a robot arm. From few new ob-
servations, I resolve both types of ambiguity resulting in simultaneous recon-
struction and instance identification.

tions: (i) input preprocessing, (ii) normal and density fitting loss (with my novel

contribution on density-normal consistency loss), and (iii) feature learning loss.

5.1.1 Input Preprocessing

Given raw multi-view RGB images with camera poses, I preprocess these images

to generate mask and surface normal images using pre-trained models. Specifi-

cally, I employ SAM [21] to map each RGB image I to three sets of masks with

different granularities: Mc(I), Mm(I), and Mf(I), representing coarse, mid,

and fine-level masks, respectively. In this process, I use SAM’s point query

method, similar to the preprocessing approach in LangSplat [116]. I then use
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DSINE [5] to estimate surface normals denoted by N(I).

5.1.2 Normal and Density Fitting Loss

The normal and density fields, n(x) and σ(x), are approximated using voxel

grid representations and fitted to the predicted normal and segmentation masks,

following prior work [83]. While I adopt two key loss terms from the previous

work – (i) the normal vector rendering loss and (ii) the density penalization

loss for background pixel rays (refer to the previous paper for details) – in this

section, I introduce a novel density-normal consistency regularization loss to

further enhance geometric accuracy.

I empirically observe that for highly concave objects, the normal rendering

loss alone tends to cause n(x) to overfit the rendered normal images while signif-

icantly violating geometric consistency with σ(x), leading to distorted results.

To address this issue, I propose a density-normal consistency regularization loss

for each ray r, defined as the difference between the normal vector obtained from

the gradient of the density field and the predicted normal. Denoting the accu-

mulated transmittance along the ray r as T (r, t) = exp(− ∫ t
tn
σ(r(s))ds), the

loss can be expressed:

Lnormal(r) ∶=
XXXXXXXXXXXXXX

∫
tf
tn

T (r, t)∇σ(r(t))σ(r(t))dt
∥∫

tf
tn

T (r, t)∇σ(r(t))σ(r(t))dt∥
−N(r)

XXXXXXXXXXXXXX
. (5.1)

5.1.3 Feature Learning Loss

Given the density field σ(x), I train a hierarchical field F (x) = (Fc(x), Fm(x), Ff(x))

for each granularity level c,m, and f . Each field is trained simultaneously but

independently using a contrastive loss formulation [14]. In brief, contrastive loss

encourages feature vectors along rays passing through pixels of the same mask

within an image to be similar (positive pairs), while ensuring that feature vec-
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tors along rays passing through pixels of different masks are distinct (negative

pairs). At each training step, I sample 256 pairs of rays from a single viewpoint

to construct positive and negative pairs for the triplet loss [123].

I can perform clustering to identify object instances using Fc(x), Fm(x), or

Ff(x). However, as discussed in the introduction (Fig. 5.1), there is inherent

ambiguity in determining which level of the hierarchy corresponds to the correct

object instances. Moreover, in many cluttered scenarios, none of these levels

may yield the correct segmentation. As illustrated in Fig. 5.2, the medium-level

representation fails to distinguish between different dog-shaped objects, while

the fine-level representation over-segments objects, such as separating a cup’s

handle from its main body.

To obtain the correct instance identification, I should leverage an appro-

priate combination of representations from different levels, which is achieved

through my Interact-to-Identify algorithm, introduced in the next section.

5.1.4 Instance Field Representation

In Section 5.2, I obtain the initial field representations n(x), σ(x) and three lev-

els of feature fields: Fc(x), Fm(x), and Ff(x). Leveraging these representations,

my Interact-to-Identify framework enables robots to autonomously change the

scene, gather more information, identify object instances, and fine-tune the

geometry.

Specifically, it consists of four steps. I first construct an instance candidate

tree using the density and feature fields with clustering algorithms. Given the

tree representations, I then propose an effective heuristic algorithm to determine

which part to interact with – using pick-and-place or pushing actions – to

introduce informative changes in the scene. With a few additional sparse RGB

images, I identify object instances and estimate a transformation matrix for
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each object based on rigid-body assumptions. Finally, I fine-tune each object’s

geometry using additional images. The overall process is summarized in Fig. 5.3

and each step is detailed in the subsequent sections.

5.1.5 Instance Candidate Tree Construction

An example of the final output of this section, referred to as the instance can-

didate tree, is visualized in Fig. 5.4. Since I have three levels of hierarchical

feature fields, one might reasonably assume that the tree representation can be

easily obtained by performing clustering in each feature space and applying ap-

propriate heuristics to determine inclusion relationships. However, I empirically

find that clustering results at each feature level are often imperfect, leading to

inconsistencies. In some cases, a cluster present in the mid-level features may

be missing from the coarse level, while in other cases, a mid-level cluster may

be larger than its corresponding coarse-level cluster, resulting in noisy and in-

consistent hierarchical structures.

I develop a tree construction algorithm that is robust to noisy and incon-

sistent hierarchical clustering results. First, recall that I have voxel-grid repre-

sentations of σ and F . By extracting object point clouds through thresholding

σ and clustering them using the corresponding feature vectors F with HDB-

SCAN [99], I obtain multiple point clouds – each corresponding to a cluster –

at each feature level. Second, irrespective of whether a cluster belongs to the

coarse, mid, or fine level, I sort all clusters in descending order based on the

bounding box size in their respective point clouds. Third, the largest cluster is

assigned as the first root node. I then apply an iterative tree generation algo-

rithm that sequentially determines whether each subsequent cluster should be

a child of an existing node, a new root node, or an identical duplicate of an
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(a) Reconstructed geometry (b) Instance candidate tree

(c) Cluster per node

Figure 5.4: Instance candidate tree and its nodes. The Instance candidate tree
(b) contains information about the reconstructed geometry (a). Each node in
(b) corresponds to one cluster as in (c), with the child node included in its
parent node.

existing node, expanding the tree accordingly2.

5.2 Method

5.2.1 Algorithms for Determining Where-to-Interact

To uncover previously unobserved surfaces through robotic interaction, I aim

to actively manipulate objects within the scene to achieve configurations that

maximize surface visibility. To this end, I present an algorithm that evalu-

ates and selects interactions based on their potential to reveal new geometric

information. I first introduce a method to quantify the expected information

gain from an interaction by leveraging a visibility-based metric. Subsequently,

2Intersection over Union (IoU) between clusters in voxel space – comparing the existing
cluster and the one being added – are used to determine whether the cluster should be assigned
as a child node, a new root node, or identified as an identical duplicate.
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I propose a sampling-based action selection strategy that identifies the optimal

interaction by maximizing the anticipated visibility improvement.

First, to calculate visibility in 3D, I define a single visibility scalar value

per voxel. The visibility field represents how much each point was observable

during the training process. Given the standard definition of transmittance:

T (r, t) = exp (−∫ t
tn
σ(r(s))ds), I define the visibility U for a voxel (i, j, k) as:

U(i, j, k) = max
r∈Rijk

(T (r, t∗)σ(r(t∗))), (5.2)

where Rijk is the set of training rays that pass through the voxel (i, j, k), and

t∗ is defined for each ray r such that r(t∗) = (i, j, k). If none of the rays passes

through the voxel, U is set to zero. A lower U indicates unobserved voxels,

hence regions which should be uncovered by the interaction, as in Fig. 5.5(a).

Building upon the visibility metric, I evaluate candidate actions by sampling

from a discretized action space and computing the expected utility of each ac-

tion. Each action a is defined by a target node within the instance candidate

tree and a displacement vector on the x-y plane. The utility of an action is

quantified by the amount of newly visible surface area it reveals, as measured

in the image space of viewpoints V , while adhering to constraints such as col-

lision avoidance. Specifically, for each sampled action, I compute the the value

Q, proportional to the cumulative increase in pixel-level visibility and discard

actions that result in collisions with other objects or the environment as in the

following optimization objective:

Q(a) = ∑
v∈V

projv(act(U,a)) +C(a). (5.3)

Here, projv refers to projection on the viewpoint v, and act(U,a) is the vis-

ibility field after applying the action a. C(a) encapsules constraints such as

collision and workspace. For each connected component in the instance can-

didate tree, I select actions that maximize the total value: argmaxaQ(a). To
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ensure computational efficiency, I discretize the action space into 12 uniformly

spaced directions and 20 distance magnitudes ranging from 1 cm to 40 cm.

5.2.2 Instance Identification under Rigid-Body Assumption

Through interaction, if different instance objects – initially closely attached

and difficult to distinguish – move apart and become more separated, new

observations (i.e., a few additional sparse RGB images) can provide valuable

information to resolve initial ambiguities. With this information, the goal of

instance identification is to determine which combination of nodes at each level

corresponds to the correct object instances. For example, in Fig. 5.4(b), I must

decide whether (0,1,7), (2,3,1,7), or another combination is the correct set of

object instances.

My key idea is based on the rigid body assumption for each object. The

high-level intuition of our method is as follows: given a candidate instance pair,

e.g., (0,1,7), I quantify how well the selected 3D clusters can be transformed

through rotation and translation such that the projections of the transformed

clusters onto 2D images align with the masks of the new observations. Starting

from the root node combination, I progressively refine the node partitioning,

searching for an optimal combination until the alignment error is sufficiently

low.

To elaborate, I first introduce some notations. Let v = 1, . . . , V be the in-

dex for input images, each captured from a different camera pose, given V new

observations. Letmv be the mask image corresponding to the v-th view observa-

tion. Let Xi denote a 3D cluster or point cloud in the tree, where i = 0, . . . ,N−1,

and N is the total number of nodes in the tree. Let L be the number of leaf

nodes, and let l be an array of leaf node indices. For example, in Fig. 5.4, L = 6

and l = [2,4,8,5,6,7]. Let Ti be the rotation and translation parameters for Xi,
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and when Xi is transformed by Ti and projected onto the image plane in the

v-th direction, it forms a 2D point cloud, which I denote by projv(TiXi).

My algorithm consists of two steps. First, I determine the view-dependent

mask assignment matrices Sv ∈ {0,1}M×L with binary values, where M is the

number of masks in mv for v = 1, . . . , V . The matrix Sv maps each leaf node

to one of the masks3, ideally to a mask that contains it, and is surjective (not-

ing that L ≥ M). Specifically, to find Sv for each mv with M masks, I use

LightGlue [90], which provides pixel-wise correspondences (outputting one-to-

one matches for a subset of pixels). I define Wv ∈ RM×L such that Wv(i, j)

represents the number of matches where the two pixels belong to the i-th mask

and the j-th cluster. With a convex relaxation allowing Sv to take values within

[0,1], I then formulate the following linear programming for each v indepen-

dently:

min
Sv

−Tr(W T
v Sv)

s.t. 0 ≤ Sv(i, j) ≤ 1,
L

∑
j=1

Sv(i, j) = 1,
M

∑
i=1

Sv(i, j) ≥ 1, (5.4)

for i = 1, . . . ,M and j = 1, . . . , L. This linear programming can be efficiently

solved, e.g., using [47]. Then I project Sv to take either 0 or 1.

Second, as discussed above, I progressively adjust the node combination

to find the optimal selection. During this process, I optimize the rotation and

translation parameters for each cluster to minimize the alignment error, where

Sv is explicitly used to define the error. Specifically, let I be an initial guess (the

root node combination) for the instances (e.g., I = {0,1,7} for the example in

Fig. 5.4). Let leaf(i) be the set of leaf node indices of the i-th node, and let mj
v

be the set of 2D pixel coordinates in the j-th mask of mv. Lastly, let supp(v)
3To see why, think of the nodes and masks as one hot vectors.
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denote the set of indices where the vector v has nonzero entries. I then solve

the following optimization:

min
{Ti∶i∈I}

V

∑
v=1
∑
i∈I

d(projv(TiXi), ⋃
k∈leaf(i)

⋃
j∈supp(Svek)

mj
v), (5.5)

where d(⋅, ⋅) is the Chamfer distance metric between two 2D point clouds and

ek is k-th standard basis in RL. If the objective function is minimized below

a predefined threshold, I stop and return the instances I. Otherwise, I split

one of the nodes and redefine I, e.g., I ∶ {0,1,7} ↦ {2,3,1,7}, then solve the

optimization again. I repeat this process until the alignment error is sufficiently

low.

When the number of instances in I is large, simultaneously optimizing all

transformation parameters can be computationally expensive. To develop an

efficient algorithm, I propose a strategy to obtain a proxy solution more quickly.

I decouple the optimization in Eq. (5.5) for each i and replace the distance

metric d with a one-way Chamfer distance metric – specifically I utilize the

robust loss from [13] in order to mitigate the effects of noise –, which is zero if

the first argument is contained within the second. If the objective for the i-th

node is sufficiently minimized, I accept it. Otherwise, I consider its children. If

any of the children is a leaf node, I accept it; otherwise, I repeat the process. As

such, independently optimizing multiple nodes enables parallel computation and

reduces the problem dimension, significantly improving speed. Once this process

is complete, I obtain a set of selected nodes I and transformation parameters

{Ti} for each i ∈ I. Finally, I simultaneously fine-tune all parameters {Ti} using

Eq. (5.5).
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(c) Instance-wise update process

(a) Change 

(b) Render visibility 

Figure 5.5: Selective geometric finetuning process. After a scene change (a), I
calculate uncertain surfaces (yellow in (b)) that represents newly visible parts.
For instances with uncertain parts, I perform geometric finetuning (c) to alle-
viate geometric ambiguity.

5.2.3 Selective Geometric Finetuning

Once {Ti} is obtained, I transform each cluster as Xi ↦ TiXi, forming an up-

dated 3D scene. Scene updates may disclose previously occluded surfaces, which

may have uncertain (not observed) geometry. To solve this problem, I design

a geometric finetuning algorithm to efficiently reuse the new observations cap-

tured in Sec. 5.2.2, while utilizing the visiblity in Sec. 5.2.1. I perform selective

finetuning on newly discovered volume only, leading to a more cost efficient

algorithm.

First, I filter instances with newly visible surfaces from the new observations

for efficiency. I use a volume rendering technique to obtain visibility values from

each instance as in Fig. 5.5(b). I consider an instance as a target of geometric

finetuning if it contains low-visibility surfaces from all new observation view-

points. Next, I perform geometric finetuning by leveraging existing geometry
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Figure 5.6: Instance candidate fields, uncertainty, and instance wise geometry
for various scenes. Different colors represent different instances in instance can-
didate tree and instance wise geometry. In instance candidate tree, I only depict
the leaf nodes. For uncertainty visualization, yellow represents high uncertainty
(newly visible surface due to change). Interact-to-Identify successfully generates
instance candidate trees and recovers instance wise geometry given change.

TiXi, the visibility U , and images from the new observations. In order to pre-

serve the certain (well-observed) geometry in TiXi, I consult U to retain parts

with high visibility. Then, with the new observations, I reuse the loss of Sec. 5.1.2

to finetune the geometry as in Fig. 5.5(c).

5.3 Experiments

In this section, I provide both qualitative and quantitative analysis on the

performance of Interact-to-Identify on identifying individual object instances
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and their 3D geometries by understanding and utilizing change in the scene.

Implementation-wise, I first predict surface normals and instance masks each

using [5, 21]. To reconstruct the objects solely, I retain predicted masks within

the predefined workspace of the robot. The workspace is defined to be a 50 cm

x 60 cm x 30 cm box positioned at the center of the franka panda workspace.

All of my experiments are conducted on an RTX 3090, with an i7-8700 CPU.

In addition to my real-world setup including a Realsense d435i with Franka

Panda, I create photo-realistic scenes using Blender Cycles [15] by populating

a tabletop with household objects, for groundtruth annotations.

First, I report the qualitative results in Fig. 5.6. The first column represents

images before change, and the second and third columns visualize the instance

candidate tree. For the instance candidate tree, different colors notate different

instance candidates, and only the leaf nodes of the tree are visualized. The

fourth column reports the change inflicted upon the scene, while the fifth and

last columns each represent the uncertainty in Sec. 5.2.3 and the final instance-

wise geometry. The first and second rows are examples from my real-world

setup, while the last row originates from my photo-realistic Blender dataset.

For all cases Interact-to-Identify successfully captures instance candidates in a

tree formulation, estimates, and exploits change to reflect and finetune changes

in the geometry.

Second, I provide quantitative results regarding the ability of my model

to obtain geometry and instance information. I conduct evaluation on my

Blender dataset for accessibility to groundtruth instance and geometry. I sim-

ulate change within the scene by changing the position and orientation of each

object. I render RGB images to 50 viewpoints uniformly sampled from a hemi-

sphere and predict surface normals and instances using [5, 21].

Table 5.1 compares the geometric accuracy of variations of my model with
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Table 5.1: Geometric update performance of various methods. Metrics include
visual surface discrepancy (VSD) [63] and intersection over union (IoU) of depth
for 150 novel viewpoints. Bold represents best results while underline refers to
second best.

VSD (↓) IoU (↑)

Models 2 img 4 img 8 img 16 img 2 img 4 img 8 img 16 img

Ours (U+F) 0.0368 0.0361 0.0323 0.0325 0.876 0.885 0.903 0.903
Ours (U) 0.0418 0.0384 0.0367 0.0372 0.844 0.862 0.884 0.885
Ours (S) 0.0871 0.0421 0.0380 0.0352 0.668 0.897 0.942 0.953

Dex-NeRF (U) 0.1348 0.0666 0.0549 0.0503 0.797 0.808 0.895 0.919
Dex-NeRF (S) 1.0429 0.9748 0.0547 0.0556 0.050 0.072 0.861 0.918
NeRF (U) 0.1222 0.0712 0.0614 0.0611 0.797 0.808 0.895 0.919
NeRF (S) 0.8468 1.0522 0.1050 0.0652 0.050 0.072 0.861 0.918

- U: update
- S: Scratch
- F: Finetune

other field-based methods such as Dex-NeRF [66] and NeRF [102]. For my

method, the update scheme represents instance-wise rigid body transform ob-

tained from Sec. 5.2.2, while finetuning refers to geometric finetuning of Sec. 5.2.3.

For the update scheme for Dex-NeRF [66] and NeRF [102], I follow the method

of Evo-NeRF [72] by loading the trained weights and resuming training. I com-

pare in such a manner since my update method cannot be directly applied on

continuous field representations such as Dex-NeRF [66] and NeRF [102].

I evaluate geometry with 2 metrics: Visual Surface Discrepancy (VSD) [63]

and Intersection over Union (IoU). VSD refers to the average error of the ren-

dered object depth with respect to the groundtruth depth. IoU measures the

match between rendered object masks and groundtruth masks. I render object

depth and mask to 150 novel viewpoints uniformly sampled from a hemisphere

surrounding the objects. My experiments show that my method is both accu-

rate and image efficient in capturing the geometry for a scene with change.

With only 2 images, my method can successfully transform objects in 3D space

(update) while finetuning newly visible parts.
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Table 5.2 reports the instance identification performance of my model, the

ablated versions of my model, and Garfield [74]. The ablated versions (coarse,

mid, fine) are given only fixed types of masks from SAM [21], which cannot be

updated based on observed changes. Instead, they represent the 3D instances

I can obtain from passive visual observation. For Garfield [74], I sweep the

scale hyperparameter from 0 to 0.40 in 0.05 steps. Garfield [74] output only a

single cluster for scales over 0.15. For a fair comparison, I manually crop the

background geometry captured by Garfield and leave only the objects in the

clustering phase.

For the metric, I calculate the precision and recall of the 3D bounding

boxes of the predicted instances with respect to the groundtruth bounding

box. Precision refers to IoUs in the 3D bounding box averaged over predicted

instances while recall refers to IoUs averaged over groundtruth instances. My

experiments report that my method can identify instances more accurately

than other methods such as Garfield [74]. In addition, I find that determining

instances in a change-based manner outperforms utilizing any level of mask

predicted via texture from [21].

Table 5.2: Precision and recall of 3D bounding boxes. Precision averages IoU
over predicted instances, while recall averages over GT instances. Bold repre-
sents best results.

Models Precision (↑) Recall (↑)

Ours 0.776 0.776
Ours (coarse) 0.547 0.612
Ours (mid) 0.650 0.674
Ours (fine) 0.611 0.505

Garfield [74] (0.00) 0.628 0.431
Garfield [74] (0.05) 0.596 0.417
Garfield [74] (0.10) 0.494 0.472
Garfield [74] (0.15) 0.247 0.245
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Chapter 6

Conclusion

6.1 Summary

Vision-based grasping aims to identify effective grasp configurations by utilizing

data from visual sensors. In most cases, algorithms process RGB and depth

inputs from contemporary RGB-D cameras to determine the precise position

and orientation of the gripper for grasping an object in 3D space. This field has

been widely explored due to its promise in facilitating robotic manipulation

within unstructured and dynamic settings. When robots encounter unfamiliar

objects in diverse environments, vision-based grasping plays a fundamental role

in enabling practical tasks such as organizing items or performing bin packing

operations.

As grasping algorithms and vision sensing technologies continue to evolve,

vision-based grasping has grown increasingly dependable across a broad spec-

trum of applications. Contemporary grasping models, refined through advanced

engineering, are able to incorporate physical principles—such as surface smooth-
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ness and object center of mass—to produce precise and effective grasps grounded

in object geometry. Simultaneously, advancements in sensing technologies like

stereo cameras, LiDAR, and infrared have made accurate geometric percep-

tion more accessible and cost-effective. In addition, the growing availability of

real-world datasets has played a crucial role in enhancing the performance of

vision-based grasping in practical, real-world scenarios.

Despite these advancements, scenes involving transparency and clutter re-

main difficult for vision sensors to interpret accurately, which significantly un-

dermines the reliability of vision-based grasping systems. Transparent objects,

in particular, present major challenges for depth sensing due to their inherent

optical properties, often resulting in distorted or missing depth data. Similarly,

cluttered environments—where multiple objects are in close contact—lead to

occlusions and hidden surfaces that prevent complete geometric understanding.

These factors hinder the accurate reconstruction of object geometry from visual

input, ultimately leading to unreliable grasp predictions.

This thesis introduced a robust approach for capturing scene geometry in

challenging environments that include transparency and clutter. The proposed

method made use of general-purpose pretrained vision models, eliminating the

need for environment-specific adjustments or fine-tuning. It leveraged mid-level

visual cues—such as instance masks and surface normals—and proposed meth-

ods to utilize them in a spatially coherent manner to enable reliable geometric

reconstruction.

In Chapter 3, I proposed MasKGrasp, a simple CNN-based robotics grasp-

ing method trainable on augmented real images, that processes both transpar-

ent and opaque objects and generalizes to real-world objects. I demonstrate

that the instance mask is an effective yet light-weight intermediate representa-

tion for stable grasp pose estimation for individual objects, regardless of their
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significant appearance variations. Also, I propose a pipeline and dataset that

augments large-scale instance segmentation datasets such as [89] with more

transparent objects, leading to more reliable instance masks. In addition, in-

stance masks provide a clue to avoid crowded regions, which results in better

grasping performance on scenes cluttered with multiple objects. MasKGrasp

outperforms previous approaches on a real-world test environment with un-

seen objects. As more real-world annotated datasets for instance segmentation

become available [21], mask-based robotic grasping is expected to become in-

creasingly reliable.

However, MasKGrasp is a 2D grasping algorithm that assumes a fixed grasp-

ing height perpendicular to the image plane, and has difficulty grasping objects

incompatible with such a fixed grasping height. In addition, when an opaque

object is placed inside a transparent object, the masks are often combined into

one, leading to inaccurate grasps. Even with flow-based augmentations, it seems

that understanding complex real-world refractions requires more sophisticated

datasets.

In Chapter 4, I proposed NFL, a robust and practical solution to perform

6-DoF grasping of transparent objects. Since scanning hardware fails to ob-

tain the correct geometry for transparent objects, it is a natural thought to

change the input modality to multi-view images. In contrast to other meth-

ods, which aggregate multiview information based on RGB images, I propose

that using surface normals has substantial benefits in terms of multi-view con-

sistency. NFL models predicted surface normals and masks as a probabilistic

distribution and learns a normal field of a real scene in 40 seconds. The nor-

mal field includes accurate, holistic 3D geometry from which I can quickly infer

grasp positions. Experiments on various datasets show the robustness of NFL

to many real-world scenes and superior grasping performance. I also conduct
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ablation studies to support the choice of using surface normals and segmen-

tation masks rather than RGB to form neural fields for transparent objects.

Moreover, with recent advancements in both surface normal estimation [5] and

instance segmentation [21], in terms of datasets and models, the applicability

of the proposed approach is expected to further improve in the near future.

Although NFL exhibits stable performance for a variety of scenes, it still

has room for enhancement. First, expediting the algorithm will definitely im-

prove the practicality of grasping. Even building on the grid-based DVGO [127]

algorithm, NFL is still slower than GraspNeRF [43]. With faster speed, one

can deploy the algorithm to quickly refresh the geometry in sequential grasp-

ing. Additionally, NFL finds the 3D geometry of the scene from input images

surrounding the bounded volume of known workspace. Although the required

setting is not difficult for a conventional manipulation setting, it may hinder

generalizing to all images in the wild. For example, I could not evaluate NFL

on the HAMMER dataset [69] which has images captured from only one side

of the objects.

In Chapter 5, I proposed Interact-to-Identify, a method to actively resolve

ambiguities of object instance and geometric information for cluttered scenes.

My method can (i) interact with objects via a robot arm, (ii) estimate and ex-

ploit change to clearly determine instances, and (iii) reflect change in the scene

while also finetuning the geometry without extensive data capture. Centered

on the concept of visibility, Interact-to-Identify generates actions that not only

maximize the exposure of object surfaces but also enable efficient geometric

updates for newly observed regions. Experiments on both real and synthetic

settings show that Interact-to-Identify can stably acquire object instances and

geometry, which can later benefit complicated tasks such as rearrangement or

packing.
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Although Interact-to-Identify exhibits consistent performance in a variety

of scenes, it is still far from perfect. First, Interact-to-Identify requires that the

true instances should be included in the nodes initially formulated in the in-

stance candidate tree, which depends on the detection performance of general

vision modules such as SAM [21]. While the generalization capability of current

vision models was sufficient for the conducted experiments, introducing mech-

anisms for further splitting or merging nodes could enhance the algorithm’s

flexibility in handling challenging or adversarial cases. In addition, the scope of

change Interact-to-Identify asserts is confined to rigid body transforms. Changes

in the scene outside of such scope, for example, the addition of new objects,

cannot be modeled by the current pipeline. Further adding modes would also

improve the flexibility of the algorithm.

Although stated separately, the three elements agree on the final goal of

reliable vision-based robotic grasping. For reliability, the three methods com-

monly utilize the outputs of general-purpose vision models such as instance

segmentation or surface normal estimation. They combine the outputs in a way

that avoids scene-specific post-processing for reliable acquisition of the objects’

geometry.

6.2 Open Questions and Future Directions

Sensor Modality and Reliability In the pursuit of more reliable vision-

based grasping, an intriguing direction involves the integration of emerging

vision sensors, such as event cameras. While not yet as commonly adopted as

traditional RGB-D sensors, event cameras offer a set of unique characteristics

that are particularly well-suited to robotic applications—including high tempo-

ral resolution, low power consumption, and the ability to function effectively in

low-light conditions. These properties make them promising candidates for en-
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hancing the robustness of perception in dynamic or challenging environments.

Incorporating such advanced sensing technologies into vision-based grasping

systems could open up new possibilities for achieving greater reliability and

responsiveness in real-world robotic manipulation tasks.

End-to-end Models and Reliability Many recent works in robotic manip-

ulation adopt a data-driven approach that directly predicts robot actions from

sensor inputs [18, 151, 110, 77, 129]. These end-to-end models—often referred

to as vision-language-action (VLA) models—learn the relationships among vi-

sual observations, language instructions, and action tokens using large-scale

transformer architectures. Despite their impressive capabilities, such models

often struggle to generalize to unseen environments, primarily due to the lim-

ited availability of web-scale training data [119]. While increasing the size and

diversity of the dataset is a straightforward solution, the ideas in this thesis

can propose a complementary direction. Specifically, incorporating geometric

cues derived from mid-level visual representations, such as surface normals and

instance masks, may enhance generalization across diverse scenes [25].
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초록

비전 기반 파지는 로봇이 시각 센서로부터 얻은 정보를 바탕으로 성공적인 파지

구성을 결정하는 데 초점을 둔다. 일반적으로 이러한 알고리즘은 최신 RGB-D 카

메라로부터 획득한 RGB 및 깊이 영상을 입력으로 받아, 3차원 공간에서 물체를

어떻게, 어디서 파지할지를 출력한다. 이 방식은 비정형 환경에서의 로봇 조작을

가능하게 하는 잠재력 덕분에 활발히 연구되어 왔다. 특히, 임의의 장면에서 처음

마주하는 물체를 다뤄야 할 때, 비전 기반 파지는 물체 정렬, 빈 정리 등과 같은

유의미한 작업 수행을 위한 핵심 구성 요소로 작용한다.

최근 파지 알고리즘과 시각 센서의 발전으로, 비전 기반 파지는 다양한 상황에

서도 점점 더 신뢰성 있는 성능을 보이고 있다. 최신 파지 모델은 정교한 공학적

설계를 바탕으로, 표면의 매끄러움이나 무게중심과 같은 물리 기반의 편향을 반

영해 물체의 기하 정보를 활용한 고품질 파지를 생성할 수 있다. 동시에 스테레오

비전, LiDAR, 적외선 기반 기술을 활용한 시각 센서 역시 정밀도는 물론 가격

면에서도 개선되어 대부분의 물체에 대해 정확한 기하 추정을 가능하게 하고 있

다. 또한, 실세계 기반 데이터셋의 확산은 실제 로봇 응용 분야에서의 성능 향상에

크게 기여하고 있다.

그러나 투명 물체나 복잡하게 얽힌 장면(clutter)에서는 여전히 시각 센서가

올바른 인식을 하지 못해, 비전 기반 파지 알고리즘의 신뢰도를 크게 떨어뜨리는

문제가 발생한다. 첫째, 투명 물체는 물리적 특성상 깊이 카메라에서 복잡한 센

싱 오류를 유발한다. 둘째, 여러 물체가 접촉해 있는 클러터 환경에서는 가려진

표면이나 관찰이 불가능한 영역이 많아져 정확한 기하 정보 획득이 어렵다. 이러

한 요소들은 시각 기반의 정확한 기하 추정을 방해하며, 결과적으로 파지 실패로

이어질 수 있다.

본 논문에서는 투명 물체 및 클러터 환경에서도 신뢰성 있는 기하 정보를 획득
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할 수 있는 방법을 제안한다. 일반 데이터로 학습된 사전 학습 비전 모듈의 출력을

활용함으로써, 특정 장면에 의존한 튜닝 없이도 안정적인 기하 재구성이 가능하도

록 한다. 구체적으로, 마스크와 표면 법선과 같은 중간 수준의 표현을 공간적으로

구조화하여활용함으로써견고한기하정보를추출한다.또한,실제로봇시스템을

활용한 실험을 통해 제안된 방법의 실용성과 현장 적용 가능성을 입증하였다.

다양한 환경에서 로봇이 인간의 노동을 효과적으로 대체하기 위해서는, 환경

변화에 따른 성능 안정성이 반드시 보장되어야 한다. 본 논문은 비전 기반 파지의

대표적 난제인 투명성과 클러터 문제를 해결하고, 일반 비전 모듈을 기반으로 한

해법을 제안함으로써 로봇 조작의 안정성과 견고함 향상에 기여하고자 한다.

주요어: 시각 기반 물체 파지, 안정성, 비전 기반 모델, 투명함, 혼잡함

학번: 2020-25228
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